Shear Bond Strength of Glass Ionomer Cement to Silver Diamine Fluoride-Treated Artificial Dentinal Caries.

Pediatr Dent

Dr. Stefan Habelitz is a professor, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, Calif., USA;, Email:

Published: May 2020

AI Article Synopsis

  • The study aimed to evaluate the shear bond strength (SBS) of glass ionomer cement (GIC) on artificial carious dentin with and without prior treatment of silver diamine fluoride (SDF).
  • Five experimental groups tested various combinations of dentin demineralization, SDF application, and timing of GIC placement to determine differences in bond strength.
  • Results indicated that the strongest bond was achieved when GIC was applied to conditioned, demineralized dentin treated with SDF one week earlier, while immediate application led to the weakest bond strength.

Article Abstract

The purpose of this study was to measure the shear bond strength (SBS) of glass ionomer cement (GIC) to artificial carious dentin with and without silver diamine fluoride (SDF) treatment. Permanent molars were sectioned and demineralized to create artificial carious lesions. In five groups, the demineralization of dentin, application of SDF, use of conditioner, and elapsed time between the placement of SDF and restoration were tested for differences in SBS using an UltraTester machine. Statistical analysis was done using the Kruskal-Wallis test and Tukey-Kramer multiple comparison tests. The highest bond strength was found when GIC was placed on conditioned and demineralized dentin treated with SDF one week earlier. Treatment with SDF and use of conditioner did not statistically affect the SBS of GIC to demineralized dentin. Statistically significant increases in bond strength were found when one week elapsed between SDF application and GIC placement. The lowest bond strength was found with immediate GIC application onto SDF-treated demineralized dentin. These in vitro findings suggest that silver diamine fluoride treatment does not significantly affect the bond strength of glass ionomer cement to dentin lesions, and improved retention is obtained by allowing SDF solution to set for one week prior to GIC placement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376221PMC

Publication Analysis

Top Keywords

bond strength
24
glass ionomer
12
ionomer cement
12
silver diamine
12
demineralized dentin
12
shear bond
8
strength glass
8
artificial carious
8
diamine fluoride
8
sdf conditioner
8

Similar Publications

Pnictogen Bond-Mediated Coassemblies for Noncovalent Molecular Glass.

Nano Lett

January 2025

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Pnictogen bond (PnB) occurring on the group-15 elements is recognized as σ- or π-hole-based interaction that has garnered attention in the fields of anion recognition and organocatalysis. Due to the polyvalent feature of pnictogens and high directionality, PnB possesses potential in the design of convergent coassembled materials with acceptors containing lone pair electrons or anions, which however is rarely explored so far. Herein, we unveil the role of antimony (Sb)-based PnB donors in producing self-assembled chiroptical materials with lone pair electron containing acceptors.

View Article and Find Full Text PDF

Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond.

Arch Pharm (Weinheim)

January 2025

Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.

2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.

View Article and Find Full Text PDF

Elastic, strong and tough ionically conductive elastomers.

Nat Commun

January 2025

Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.

Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a low polymer.

View Article and Find Full Text PDF

Optimizing bond strength: Insights into resin-based restorative materials and calcium silicate cement interactions.

Eur J Oral Sci

January 2025

Department of Basic Sciences, Biomedical Stomatology Research Group, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, Colombia.

View Article and Find Full Text PDF

Under current minimally invasive treatment regimes, minor tooth preparation and thinner biomimetic ceramic restoration are used to preserve the restored tooth's vitality, aesthetics, and function. New computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic-like material are now available. To guarantee longevity, a dental clinician must know these newly launched product's mechanical strength compared to the relatively brittle glass-matrix ceramic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!