Background: Chemo-resistance of bladder cancer has been considered to be one of the serious issues to be solved. In this study, we revealed pivotal role of miR-424 in the regulation of CDDP sensitivity of bladder cancer cells.
Methods: The cytotoxicity of cisplatin and effect of miR-424 were assessed by flow cytometry and TUNEL. Transcriptional regulation of miR-424 by HIF-1α was assessed by Chromatin immunoprecipitation (ChIP). Effect of miR-424 on expression of UNC5B, SIRT4 (Sirtuin4) and apoptotic markers was measured by QRT-PCR and/or Western blot. The regulation of miR-424 for UNC5B and SIRT4 were tested by luciferase reporter assay. The 5637-inoculated nude mice xenograft model was used for the in vivo study. The clinical significance of miR-424 was demonstrated mainly through data mining and statistical analysis of TCGA.
Results: In this study, we have found for the first time that cisplatin (CDDP) induces the expression of miR-424 in a HIF-1α-dependent manner under normoxia, and miR-424 plays a vital role in the regulation of CDDP resistance of bladder cancer cells in vitro. Mechanistically, we have found that UNC5B and SIRT4 are the direct downstream target genes of miR-424. CDDP-mediated suppression of xenograft bladder tumor growth was prohibited by the addition of miR-424, whereas ectopic expression of UNC5B or SIRT4 partially restored miR-424-dependent decrease in CDDP sensitivity of bladder cancer 5637 and T24 cells. Moreover, knockdown of UNC5B or SIRT4 prohibited CDDP-mediated proteolytic cleavage of PARP and also decreased CDDP sensitivity of these cells. Consistently, the higher expression levels of miR-424 were closely associated with the poor clinical outcome of the bladder cancer patients. There existed a clear inverse relationship between the expression levels of miR-424 and pro-apoptotic UNC5B or SIRT4 in bladder cancer tissues.
Conclusions: Collectively, our current results strongly suggest that miR-424 tightly participates in the acquisition/maintenance of CDDP-resistant phenotype of bladder cancer cells through down-regulation of its targets UNC5B and SIRT4, and thus combination chemotherapy of CDDP plus HIF-1α/miR-424 inhibition might have a significant impact on hypoxic as well as normoxic bladder cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285474 | PMC |
http://dx.doi.org/10.1186/s13046-020-01613-y | DOI Listing |
World J Urol
January 2025
Department of Urology, Renmin Hospital of Wuhan University, 99 Zhang Zhi-dong Road, Wuhan, Hubei, 430060, P.R. China.
Purpose: To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.
Methods: A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score.
J Org Chem
January 2025
College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China.
A copper-catalyzed domino addition/cyclization reaction was developed to synthesize novel benzoselenazole-linked 1,2,3-triazole and tetracyclic fused 12-benzo[4,5]selenazole[2,3-]quinazolin-12-one derivatives from isoselenocyanates. This domino reaction efficiently constructed multiple new chemical bonds in a single step, forming either four (one C-Se and three C-) or three (one C-Se and two C-) bonds. The reaction offers several key advantages, including mild conditions, broad substrate compatibility, and straightforward and safe operation.
View Article and Find Full Text PDFCells
December 2024
Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
The development of noninvasive methods for bladder cancer identification remains a critical clinical need. Recent studies have shown that atomic force microscopy (AFM), combined with pattern recognition machine learning, can detect bladder cancer by analyzing cells extracted from urine. However, these promising findings were limited by a relatively small patient cohort, resulting in modest statistical significance.
View Article and Find Full Text PDFCureus
December 2024
Biostatistics and Epidemiology, Rutgers University, Piscataway, USA.
Background Various studies have evaluated the quality of health-related information on TikTok (ByteDance Ltd., Beijing, China), including topics such as COVID-19, diabetes, varicoceles, bladder cancer, colorectal cancer, and others. However, there is a paucity of data on studies that examined TikTok as a source of quality health information on human papillomavirus (HPV).
View Article and Find Full Text PDFCureus
December 2024
Radiology, Fernandez Hospital, Hyderabad, IND.
Urological malignancies during pregnancy are exceedingly rare, with bladder cancer posing significant diagnostic and management challenges. This study describes a 28-year-old pregnant woman diagnosed with non-invasive papillary urothelial carcinoma, presenting with painless hematuria at 22 weeks of gestation. The diagnostic process included ultrasound and MRI, both of which confirmed a solitary polypoidal lesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!