Normoxic re-oxygenation ameliorates end-organ injury after cardiopulmonary bypass.

J Cardiothorac Surg

Division of Pediatric Cardiology, Department of Pediatrics, University of Michigan Medical School, 1540 East Hospital Drive, 11-740 C.S. Mott Children's Hospital, Ann Arbor, MI, 48109-4204, USA.

Published: June 2020

Background: In a rabbit model of cardiopulmonary bypass (CPB) and cardioplegic arrest, we previously showed that hyperoxic myocardial reperfusion was associated with increased left ventricular (LV) systolic dysfunction and myocardial injury compared with normoxic reperfusion. The aim of this study was to evaluate in our experimental model the impact of post-CPB reperfusion conditions on other organs potentially vulnerable to ischemic injury such as the brain and kidney.

Methods: After 60 min of CPB, aortic cross-clamp, and cold cardioplegic arrest, rabbits were reperfused under hyperoxic or normoxic conditions for 120 min. Left ventricular systolic contractility (LV + dP/dt) and diastolic relaxation (LV -dP/dt) were continuously recorded, and end-organ injury was assessed by measuring circulating biomarkers specific for kidney (cystatin C and creatinine) and brain injury [S100B and neuron specific enolase (NSE)]. At completion of the protocol, kidney and brain tissues were harvested for measuring oxidant stress (OS), inflammation and apoptosis.

Results: Following aortic cross-clamp removal, rabbits exposed to normoxic reperfusion demonstrated preserved LV systolic and diastolic function compared with hyperoxic reperfusion (LV + dP/dt: 70 ± 14% of pre-CPB vs. 36 ± 21%, p = 0.018; LV -dP/dt: 72 ± 36% of pre-CPB vs. 33 ± 20%, p = 0.023). Similarly, CPB increased plasma creatinine, S100B and NSE that were significantly attenuated by normoxic reperfusion compared with hyperoxic reperfusion (creatinine: 4.0 ± 0.5 vs. 7.1 ± 0.8 mg/dL, p = 0.004; S100B: 4.0 ± 0.8 vs. 6.7 ± 1.0 ng/mL, p = 0.047; NSE: 57.7 ± 6.8 vs. 101.3 ± 16.1 pg/mL, p = 0.040). Furthermore, both kidney and brain tissues showed increased mRNA expression and activation of pathways for OS, inflammation, and apoptosis, that were reduced under normoxic compared with hyperoxic conditions.

Conclusions: Normoxic reperfusion ameliorates cardiac, renal and neural injury compared with hyperoxic reperfusion in an in vivo animal model of CPB and cardioplegic arrest. This protective effect of normoxic reperfusion may be due to a reduction in signaling pathways for OS, inflammation, and apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285475PMC
http://dx.doi.org/10.1186/s13019-020-01173-4DOI Listing

Publication Analysis

Top Keywords

normoxic reperfusion
20
compared hyperoxic
16
cardioplegic arrest
12
hyperoxic reperfusion
12
reperfusion
10
normoxic
8
end-organ injury
8
cardiopulmonary bypass
8
cpb cardioplegic
8
left ventricular
8

Similar Publications

Oxygen-glucose-deprived peripheral blood mononuclear cells act on hypoxic lesions after ischemia-reperfusion injury.

Exp Neurol

December 2024

Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuoku, Niigata 951-8585, Japan. Electronic address:

Background: Despite advances in reperfusion therapies, ischemic stroke remains a major cause of long-term disability due to residual hypoxic lesions persisting after macrovascular reperfusion. These residual hypoxic lesions, caused by microvascular dysfunction, represent an important therapeutic target. We previously demonstrated that oxygen-glucose-deprived peripheral blood mononuclear cells (OGD-PBMCs) migrate to ischemic brain regions and promote functional recovery after stroke.

View Article and Find Full Text PDF

Protein Kinase C-β Inhibition and Survival Signaling after Simulated Cardioplegic Ischemia/Reperfusion in Non-Diabetic and Diabetic Human Coronary Arterial Endothelial Cells.

J Am Coll Surg

December 2024

Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, 2 Dudley Street, MOC 360. Providence RI 02905.

Background: Cardioplegic ischemia/reperfusion (I/R) injury poses substantial challenges during postoperative recovery, with diabetic patients particularly susceptible to adverse events. Using a model entailing the subjection of human coronary artery endothelial cells (HCAECs) to simulated cardioplegic I/R, we investigated the potential of protein kinase c β (PKC-β) inhibition to augment cellular survival in this context.

Study Design: HCAECs were isolated from harvested coronary arteries of diabetic (D) and nondiabetic (C) patients (N = 4 per group).

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the impacts of tanshinone IIA (Tan IIA) on ischemia/reperfusion (I/R)-induced cardiomyocyte injury in coronary heart disease (CHD), and to determine whether Tan IIA regulates myocardial cell injury induced by I/R through the Hyaluronan Synthase 2fibroblast growth factor 9 axis.

Methods: Weighted gene co-expression network analysis (WGCNA) of the GSE23561 microarray dataset determined gene modules linked to CHD. The key genes were further explored through differential expression and protein-protein interaction (PPI) network analyses.

View Article and Find Full Text PDF

The aim of the study was to examine the potential role of mitochondrial permeability transition pore (mPTP) in the cardioprotective effect of chronic continuous hypoxia (CH) against acute myocardial ischemia/reperfusion (I/R) injury. Adult male Wistar rats were adapted to CH for 3 weeks, while their controls were kept under normoxic conditions. Subsequently, they were subjected to I/R insult while being administered with mPTP inhibitor, cyclosporin A (CsA).

View Article and Find Full Text PDF

Microalgae have emerged as promising photosynthetic microorganisms for biofabricating advanced tissue constructs, with improved oxygenation and reduced reactive oxygen species (ROS) production. However, their use in the engineering of human tissues has been limited due to their intrinsic growth requirements, which are not compatible with human cells. In this study, we first formulated alginate-gelatin (AlgGel) hydrogels with increasing densities of.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!