The presence of statistical outliers is a shared concern in research. If ignored or improperly handled, outliers have the potential to distort parameter estimates and possibly compromise the validity of research findings. The purpose of this paper is to provide a conceptual and practical overview of multivariate outliers with a focus on common techniques used to identify and manage multivariate outliers. Specifically, this paper discusses the use of Mahalanobis distance and residual statistics as common multivariate outlier identification techniques. It also discusses the use of leverage and Cook's distance as two common techniques to determine the influence that multivariate outliers may have on statistical models. Finally, this paper discusses techniques that are commonly used to handle influential multivariate outlier cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0844562120932054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!