High levels of extracellular H and K are unique features of the tumor microenvironment and have shown great promise for use in cancer-targeted drug delivery. Here, we design H- and/or K-responsive logic sensors utilizing in situ dimeric framework nucleic acid (FNA) assembly on the cell surface and for the first time apply the logic sensors to boosting cellular internalization of molecular payloads in tumor-mimicking extracellular environments. An anticancer aptamer AS1411 is blocked on branched FNA vertexes where a bimolecular i-motif is tethered as the controlling unit to enable a dimeric DNA nanoassembly in response to extracellular pH change. K promotes AS1411 to fold into a G-quadruplex and thereby release from dimeric FNA in which a proximity DNA hybridization-based FRET happens. Furthermore, such an AND-gated nanosensor functions more efficiently for AS1411 internalization than the conventional pathway. This finding shows significant implications for tumor-microenvironment-recognizing target drug delivery and precision cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c01612 | DOI Listing |
J Fluoresc
January 2025
Department of Physics, K. Ramakrishnan College of Engineering, Samayapuram, Trichy, 621112, India.
By a simple condensation reaction, the receptor with anthraquinone moiety was synthesized and its sensing properties were explored in the anion sensing studies via colorimetric, UV-vis studies, fluorescence studies, and DFT calculations. The synthesized receptor senses both acetate and hypochlorite ions in DMSO medium. By the addition of all anions into the receptor the colour change was observed from pink to light purple colour for acetate ion and pink to light blue for hypochlorite ion.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, China.
Optoelectronic synapse devices (OESDs) inspired by human visual systems enable to integration of light sensing, memory, and computing functions, greatly promoting the development of in-sensor computing techniques. Herein, dual-mode integration of bipolar response photodetectors (PDs) and artificial optoelectronic synapses based on ZnO/SnSe heterojunctions are presented. The function of the fabricated device can be converted between the PDs and OESDs by modulating the light intensity.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.
The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge.
View Article and Find Full Text PDFRSC Adv
January 2025
Bioorganic Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
This work presents the development of a rhodamine-based colorimetric and turn-on fluorescent chemosensor (P1) designed for selective recognition of Ni ions. Chemosensor P1 exhibited remarkable sensitivity and selectivity for Ni ions, exhibiting clear colorimetric and fluorescence responses. The binding interactions were meticulously examined using UV-Vis.
View Article and Find Full Text PDFACS Nano
January 2025
IBM Almaden Research Center, San Jose 95120-6099, California, United States.
Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!