AI Article Synopsis

  • * These sensors utilize a new assembly of nucleic acids on cell surfaces, which respond to changes in extracellular pH and potassium levels to release an anticancer drug (AS1411) effectively.
  • * The developed AND-gated nanosensor outperforms traditional methods in promoting drug internalization, offering promising implications for more precise and effective cancer therapies.

Article Abstract

High levels of extracellular H and K are unique features of the tumor microenvironment and have shown great promise for use in cancer-targeted drug delivery. Here, we design H- and/or K-responsive logic sensors utilizing in situ dimeric framework nucleic acid (FNA) assembly on the cell surface and for the first time apply the logic sensors to boosting cellular internalization of molecular payloads in tumor-mimicking extracellular environments. An anticancer aptamer AS1411 is blocked on branched FNA vertexes where a bimolecular i-motif is tethered as the controlling unit to enable a dimeric DNA nanoassembly in response to extracellular pH change. K promotes AS1411 to fold into a G-quadruplex and thereby release from dimeric FNA in which a proximity DNA hybridization-based FRET happens. Furthermore, such an AND-gated nanosensor functions more efficiently for AS1411 internalization than the conventional pathway. This finding shows significant implications for tumor-microenvironment-recognizing target drug delivery and precision cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c01612DOI Listing

Publication Analysis

Top Keywords

logic sensors
12
sensors utilizing
8
cell surface
8
as1411 internalization
8
drug delivery
8
extracellular
4
extracellular ion-responsive
4
ion-responsive logic
4
utilizing dna
4
dimeric
4

Similar Publications

By a simple condensation reaction, the receptor with anthraquinone moiety was synthesized and its sensing properties were explored in the anion sensing studies via colorimetric, UV-vis studies, fluorescence studies, and DFT calculations. The synthesized receptor senses both acetate and hypochlorite ions in DMSO medium. By the addition of all anions into the receptor the colour change was observed from pink to light purple colour for acetate ion and pink to light blue for hypochlorite ion.

View Article and Find Full Text PDF

Optoelectronic synapse devices (OESDs) inspired by human visual systems enable to integration of light sensing, memory, and computing functions, greatly promoting the development of in-sensor computing techniques. Herein, dual-mode integration of bipolar response photodetectors (PDs) and artificial optoelectronic synapses based on ZnO/SnSe heterojunctions are presented. The function of the fabricated device can be converted between the PDs and OESDs by modulating the light intensity.

View Article and Find Full Text PDF

Rapid Recognition and Monitoring of Multiple Core Biomarkers with Point-of-Care Importance through Combinatorial DNA Logic Operation.

Anal Chem

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge.

View Article and Find Full Text PDF

This work presents the development of a rhodamine-based colorimetric and turn-on fluorescent chemosensor (P1) designed for selective recognition of Ni ions. Chemosensor P1 exhibited remarkable sensitivity and selectivity for Ni ions, exhibiting clear colorimetric and fluorescence responses. The binding interactions were meticulously examined using UV-Vis.

View Article and Find Full Text PDF

Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!