The L-Arginine/NO pathway is involved in carcinogenesis and immunity. Its diagnostic and prognostic value in colorectal cancer (CRC) was determined using tandem mass spectrometry in 199 individuals (137 with CRC) and, during a three-day follow up, in 60 patients undergoing colorectal surgery. Citrulline was decreased and asymmetric (ADMA) and symmetric (SDMA) dimethylarginines and dimethylamine (DMA) were increased in CRC. The DMA increase corresponded with CRC advancement while arginine, ADMA, and SDMA levels were higher in left-sided cancers. Arginine, citrulline, ADMA, and DMA dropped and SDMA increased post incision. Females experienced a more substantial drop in arginine. The arginine and ADMA dynamics depended on blood loss. The initial SDMA increase was higher in patients requiring transfusions. Postoperative dynamics in arginine and dimethylarginines differed in robot-assisted and open surgery. Concomitant SDMA, citrulline, and DMA quantification displayed a 92% accuracy in detecting CRC. Monitoring changes in arginine, ADMA, and SDMA in the early postoperative period predicted postoperative ileus with 84% and surgical site infections with 90% accuracy. Changes in ADMA predicted operative morbidity with 90% and anastomotic leakage with 77% accuracy. If positively validated, L-arginine/NO pathway metabolites may facilitate CRC screening and surveillance, support differential diagnosis, and assist in clinical decision-making regarding patients recovering from colorectal surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355854PMC
http://dx.doi.org/10.3390/jcm9061782DOI Listing

Publication Analysis

Top Keywords

l-arginine/no pathway
12
arginine adma
12
pathway metabolites
8
colorectal cancer
8
colorectal surgery
8
adma sdma
8
crc
6
adma
6
sdma
6
arginine
6

Similar Publications

Background And Purpose: The dorsal hippocampus (dHIP) is pivotal for learning, memory, and defensive responses. Transient receptor potential vanilloid type 1 (TRPV1) receptors in the dHIP modulate contextual fear conditioning by triggering a cascade involving glutamate release, nitric oxide (NO) formation and cyclic guanosine monophosphate (cGMP) production. The present study investigated the involvement of dHIP TRPV1 receptors and their interaction with the glutamate/NO/cGMP signalling pathway in modulating the expression of contextual fear conditioning (CFC).

View Article and Find Full Text PDF

Metabolic syndrome (MetS) includes cardiovascular risk factors like obesity, dyslipidemia, hypertension, and glucose intolerance, which increase the risk of overactive bladder (OAB), characterized by urgency, frequency, urge incontinence, and nocturia. Both MetS and ovarian hormone deficiency (OHD) are linked to bladder overactivity. Nitric oxide (NO) is known to reduce inflammation and promote healing but its effect on bladder overactivity in MetS and OHD is unclear.

View Article and Find Full Text PDF

Nitric oxide (NO) plays an important and diverse signalling role in the cardiovascular system, contributing to the regulation of vascular tone, endothelial function, myocardial function, haemostasis, and thrombosis, amongst many other roles. NO is synthesised through the nitric oxide synthase (NOS)-dependent L-arginine-NO pathway, as well as the nitrate-nitrite-NO pathway. The three isoforms of NOS, namely neuronal (NOS1), inducible (NOS2), and endothelial (NOS3), have different localisation and functions in the human body, and are consequently thought to have differing pathophysiological roles.

View Article and Find Full Text PDF

Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT).

View Article and Find Full Text PDF

Low nasal nitric oxide (nNO) is a typical feature of Primary Ciliary Dyskinesia (PCD). nNO is part of the PCD diagnostic algorithm due to its discriminative power against other lung diseases, such as cystic fibrosis (CF). However, the underlying pathomechanisms are elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!