Due to risks from potential exposures to ionizing radiation (IR), improved radiological countermeasures are required, as well as rapid high-throughput biodosimetry. Genotypic variation in the general population contributes to differences in radiosensitivity that may affect biodosimetry accuracy. Previous studies utilized radiosensitive mutant mouse models (Parp1 and Atm) to determine the effects of genotypic deficiency on radiation signatures. Here, we extend this approach by examining changes in the urinary metabolome in a hematopoietic (HP) resistant mouse model (p53) after IR exposure. As p53 is a primary regulator in radiation response and apoptosis, limited hematopoietic stem cell apoptosis leads to reduced mortality at doses of ~8-10 Gy but increased mortality at higher doses (> 15 Gy) due to mitotic catastrophe in gastrointestinal (GI) crypt cells. Urine was collected from mice (wild-type (WT), p53, and p53) pre-irradiation and at 4 and 24 h after total body irradiation (TBI) (WT: 8 and 10 Gy; p53: 10 Gy) for metabolic phenotyping using an ultra-performance liquid chromatography mass spectrometry (UPLC-MS) platform. Minimal differences were detected between unirradiated WT, p53, and p53 mice. While similar perturbations were observed for metabolites involved in tryptophan, vitamin B6, and histamine pathways, glycine conjugation, and redox metabolism for WT and p53 mice after TBI, an overall dampened response was observed in p53-deficient mice. Despite comparable metabolite patterns between genotypes, differentiation was achieved through receiver operating characteristic curve analysis with high specificity and sensitivity for carnitine, N1-acetylspermidine, and creatine. These studies highlight that both attenuated and dampened metabolic responses due to genetic variability in the general population need to be addressed in biodosimetry frameworks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345090 | PMC |
http://dx.doi.org/10.3390/metabo10060234 | DOI Listing |
Clin Transl Oncol
January 2025
Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.
View Article and Find Full Text PDFJACC Clin Electrophysiol
December 2024
Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:
Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.
Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.
Mil Med
January 2025
Division of Gynecologic Oncology, Department of Gynecologic Surgery & Obstetrics, Tripler Army Medical Center, Honolulu, HI 96859, USA.
Endometrial cancer is the most prevalent gynecologic cancer in the United States and has rising incidence and mortality. Endometrial intraepithelial neoplasia or atypical endometrial hyperplasia (EIN-AEH), a precancerous neoplasm, is surgically managed with hysterectomy in patients who have completed childbearing because of risk of progression to cancer. Concurrent endometrial carcinoma (EC) is also present on hysterectomy specimens in up to 50% of cases.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Comprehensive Health Research Center (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal.
Objective: Our primary objective was to evaluate the oncologic outcomes of patients with abnormal p53 FIGO grade 3 (high-grade) endometrioid endometrial cancer. As secondary objectives, we determined the global prevalence of abnormal p53 in grade 3 endometrioid endometrial carcinomas and the geographical variations.
Methods: The following electronic databases were searched: PubMed/Medline, EMBASE, Cochrane Library, Scopus, and Web of Science.
Int J Mol Sci
January 2025
Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia.
Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!