An improved beam splitting method for intensity modulated proton therapy.

Phys Med Biol

Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China. Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China.

Published: September 2020

The pencil beam algorithm (PBA) has become the predominant dose calculation method in proton therapy, due to its high level of efficiency. However, density heterogeneity decreases the accuracy of PBA. To improve PBA's accuracy, a beam splitting method is used to divide the original scanning beam into multiple thinner beamlets. Beam splitting should ensure that the beamlets' summed fluence is as close to the original beam fluence as possible, while keeping the spatial variance of beamlets small, and minimizing the number of beamlets. In this work, the generalized differential evolution (GDE) algorithm is utilized for the optimal scheme. Under reasonable constraints for the radius and weight of beamlets, several schemes are optimized via the GDE algorithm. In order to achieve a trade-off between accuracy and calculation speed, three hexagon-based schemes, which split the original beam into 7, 13, and 19 beamlets, respectively, are proposed and compared with the scheme of Raystation 4.5. The fluence distribution calculated by the schemes with 13 beamlets and 19 beamlets are demonstrated to be more accurate than the Raystation scheme, which has 19 beamlets, with a maximum absolute difference between the summed beamlets fluence and the original beam fluence of 2.12%, and 0.93%, respectively. Furthermore, beam splitting schemes are implemented into a proton dose calculation algorithm based on the KylinRay-IMPT TPS. These schemes, based on the dose algorithm, are compared with the Monte Carlo program TOPAS 3.2 in slab geometry with lateral heterogeneity. The dose, calculated by the dose algorithm using a scheme of 13 beamlets, shows a good agreement with the dose from TOPAS. In addition, an abdominal geometry is used for further verification. Gamma analysis passing rates greater than 99.7% are observed, with a 2%/2 mm criterion. Thus, the accuracy and effectiveness of the improved beam splitting method are preliminarily verified.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab9b55DOI Listing

Publication Analysis

Top Keywords

beam splitting
20
splitting method
12
original beam
12
beamlets
10
beam
9
improved beam
8
proton therapy
8
dose calculation
8
beam fluence
8
gde algorithm
8

Similar Publications

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.

View Article and Find Full Text PDF

Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency.

View Article and Find Full Text PDF

We present state-to-state differential cross sections for rotationally inelastic collisions of vibrationally excited NO XΠ ( = 9) with Ar using a near-counterpropagating molecular beam geometry. These were obtained using the stimulated emission pumping technique coupled with velocity map imaging. Collision energies well over ∼1 eV were achieved and rotational excitations up to ∼Δ = 60 recorded for the first time for inelastic collisions.

View Article and Find Full Text PDF

The cross talk and power consumption of the 2 × 2 optical switch is a key metric in the design of large-scale photonic integrated circuits (PICs). We build a theoretical model of a 2 × 2 Mach-Zehnder interferometer (MZI) optical switch, taking into account both imbalances in the arm loss and the coupler splitting ratio. The splitting ratio imbalance requirement for a given switch cross talk is summarized, which provides a guideline for the switch design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!