A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Load alleviation of feather-inspired compliant airfoils for instantaneous flow control. | LitMetric

Load alleviation of feather-inspired compliant airfoils for instantaneous flow control.

Bioinspir Biomim

Department of Aerospace Engineering, University of Michigan, Ann Arbor, United States of America.

Published: October 2020

Birds morph their wing shape to adjust to changing environments through muscle-activated morphing of the skeletal structure and passive morphing of the flexible skin and feathers. The role of feather morphing has not been well studied and its impact on aerodynamics is largely unknown. Here we investigate the aero-structural response of a flexible airfoil, designed with biologically accurate structural and material data from feathers, and compared the results to an equivalent rigid airfoil. Two coupled aero-structural models are developed and validated to simulate the response of a bioinspired flexible airfoil across a range of aerodynamic flight conditions. We found that the bioinspired flexible airfoil maintained lift at Reynolds numbers below 1.5 × 10, within the avian flight regime, performing similarly to its rigid counterpart. At greater Reynolds numbers, the flexible airfoil alleviated the lift force and experienced trailing edge tip displacement. Principal component analysis identified that the Reynolds number dominated this passive shape change which induced a decambering effect, although the angle of attack was found to effect the location of maximum camber. These results imply that birds or aircraft that have tailored chordwise flexible wings will respond like rigid wings while operating at low speeds, but will passively unload large lift forces while operating at high speeds.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/ab9b6fDOI Listing

Publication Analysis

Top Keywords

flexible airfoil
16
bioinspired flexible
8
reynolds numbers
8
flexible
6
airfoil
5
load alleviation
4
alleviation feather-inspired
4
feather-inspired compliant
4
compliant airfoils
4
airfoils instantaneous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!