A single-step spectral editing approach using an always-on editing pulse was proposed to enhance the signals of strongly coupled spins. Specifically, a single-step spectral editing sequence with an always-on editing pulse applied at 2.12 ppm was used to enhance glutamine (Gln) and glutathione (GSH) signals at TE = 56 ms on a 7 T scanner. Density matrix simulations demonstrated that the current method (TE = 56 ms) led to large signal enhancement of at least 61% for Gln and 51% for GSH compared to a previous single-step method (TE = 106 ms). Monte Carlo simulations showed that the current method reduced noise-originated variations by 31% for Gln and 26% for GSH compared to a previous three-step spectral editing method from which the present method was derived.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385909 | PMC |
http://dx.doi.org/10.1016/j.jmr.2020.106756 | DOI Listing |
J Biomol NMR
January 2025
Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.
View Article and Find Full Text PDFAnal Chem
January 2025
Experimental Physics III, TU Dortmund University, Dortmund 44227, Germany.
Spectral dispersion in low-field nuclear magnetic resonance (NMR) can significantly affect NMR spectral analysis, particularly when studying complex mixtures like metabolic profiling of biological samples. To address signal superposition in these spectra, we employed spectral editing with selective excitation pulses, proving it to be a suitable approach. Optimal control pulses were implemented in low-field NMR and demonstrated their capability to selectively excite and eliminate specific amino acids, such as phenylalanine and taurine, either individually or simultaneously.
View Article and Find Full Text PDFActa Radiol
January 2025
Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
Background: Different parotid tumors differ in terms of treatment strategies due to their distinct biological behaviors. Time-dependent diffusion magnetic resonance imaging (t-dMRI) can characterize and quantify the cytological indexes, and then aid the differential diagnosis of various tumors. However, the value of t-dMRI in the analysis of parotid gland tumors remains unclear.
View Article and Find Full Text PDFMagn Reson Imaging
January 2025
Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No.37 Guo Xue Alley, Chengdu, Sichuan 610041, China. Electronic address:
Microstructural parameters are essential in tumor research, aiding in the understanding tumor pathogenesis, grading, and therapeutic efficacy. The imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED) model is the most widely used MR cell size imaging technique, demonstrating success in measuring microstructural parameters of solid tumors in vivo. However, its clinical application is limited by the longer scan times required for both pulsed gradient spin-echo (PGSE) and multiple oscillating gradient spin-echo (OGSE) acquisitions across a range of b-values, which can be burdensome for patients and disrupt clinical workflows.
View Article and Find Full Text PDFMagn Reson Med
January 2025
National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA.
Purpose: Two-shot γ-aminobutyric acid (GABA) difference editing techniques have been used widely to detect the GABA H4 resonance at 3.01 ppm. Here, we introduce a single-shot method for detecting the full GABA H2 resonance signal, which avoids contamination from the coedited M macromolecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!