Background: The exposure to heavy metals due to unrestrained industrialization, pollution and non-degradability imposes a significant risk to human health. Proteins are prime targets of heavy metal stress, however, the underlying mechanisms and its impact on heme proteins is still not entirely clear.

Objective: To analyze the deleterious effect of heavy metals such as cadmium, chromium and mercury on conformation of two proteins namely, cytochrome c and myoglobin. The protective effect of glycine and ascorbic acid (animal origin), gallic acid and sesamol (plant origin) on heavy metal exposure was studied.

Methods: Far- and near-UV Circular Dichroism (CD) measurements monitored the changes in secondary and tertiary structure. Absorption Soret spectroscopy study revealed changes in heme-protein interaction. Peroxidase activity has been assayed to measure the absorption of tetraguaiacol. The interaction of heme proteins with different heavy metals was done using docking study.

Results: Far- and near-UV CD measurements reveal that heavy metals disrupt the secondary and tertiary structure of heme proteins. Antioxidants counteract the deleterious effect of heavy metals. Absorption spectroscopy revealed changes in the Soret region of these heme proteins. Changes in peroxidase activity was observed on addition of heavy metals and antioxidants. Molecular docking validated interaction of the heavy metals with proteins with a significant binding affinity (-2.3 kcal/- mol).

Conclusion: Heavy metals interfered and disrupted both the heme proteins and mercury showed the maximum deleterious effect, further, chromium showed detrimental effect at very small concentration. The antioxidants from animal origin exhibited better protective response than those from plant source.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929866527666200610134442DOI Listing

Publication Analysis

Top Keywords

heavy metals
36
heme proteins
20
heavy
10
metals
9
cytochrome myoglobin
8
proteins
8
heavy metal
8
deleterious heavy
8
animal origin
8
far- near-uv
8

Similar Publications

Infants' Exposure to Toxic Trace Elements in Teethers.

Biol Trace Elem Res

January 2025

College of Arts & Sciences, American University of Kuwait, P.O. Box 3323, 13034, Safat, Kuwait.

Infants are particularly vulnerable to exposure to toxic trace elements due to their developmental stage and behaviors such as mouthing and chewing on toys. Chemical exposure to heavy metals in infants' toys is a significant concern as it poses a threat to their health and well-being. Therefore, quality control measures are essential to prevent infants' exposure to potentially harmful metals.

View Article and Find Full Text PDF

Associations Between Lead and Cadmium Exposure and Subclinical Cardiovascular Disease in U.S. Adults.

Cardiovasc Toxicol

January 2025

Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.

The impact of lead and cadmium exposure on subclinical cardiovascular disease (CVD), indicated by elevated high-sensitivity cardiac troponin (hs-cTnT) and N-terminal pro b-type natriuretic peptide (NT-proBNP) remains uncertain. We analyzed data from participants aged 20 and older, without overt CVD, in the National Health and Nutrition Examination Survey (NHANES; 1999-2004). Elevated lead and cadmium levels were defined as 3.

View Article and Find Full Text PDF

Engineering Saccharomyces cerevisiae for growth on xylose using an oxidative pathway.

Appl Microbiol Biotechnol

January 2025

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.

The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.

View Article and Find Full Text PDF

Electrochemical capacitance-based aptasensor for HER2 detection.

Biomed Microdevices

January 2025

Department of Physics, Faculty of Philosophy, Science and Letter, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.

The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) protein is specifically related to tumor cell proliferation in breast cancers. Its presence in biological serum samples indicates presence or progression of cancer, becoming a promise biomarker. However, their detection needs a simple and high accuracy platform.

View Article and Find Full Text PDF

This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom . Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of mycelia by 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!