Dodecyl sulfate with tetramethylammonium counterions has been employed to systematically investigate the influence of different static electric fields on molecular structural properties, surface tension, by adopting molecular dynamics (MD) simulations with IR and sum frequency generation (SFG) spectrum calculations. The results indicated that dodecyl sulfate (DS) and large organic TMA counterions can form a mixed adsorption layer in which one head group of DS is surrounded by two tetramethylammonium (TMA) and one water molecule. Additionally, it was observed that the surface tension significantly decreases with the increasing static electric field strength since the surfactant stands straighter at the interface as the electric field increases. The result can be instructively adopted in the manufacturing field to control surface tension. Moreover, it was found that the SFG stretch intensities of methylene decrease and the stretch intensities of the methyl group increase with increasing static electric fields. The result indicated that the static electric fields can make DS more orderly and upright at the interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c00129DOI Listing

Publication Analysis

Top Keywords

static electric
16
dodecyl sulfate
12
electric fields
12
surface tension
12
sulfate large
8
large organic
8
molecular dynamics
8
increasing static
8
electric field
8
stretch intensities
8

Similar Publications

Dynamic control of 2D non-Hermitian photonic corner skin modes in synthetic dimensions.

Nat Commun

December 2024

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA.

Non-Hermitian models describe the physics of ubiquitous open systems with gain and loss. One intriguing aspect of non-Hermitian models is their inherent topology that can produce intriguing boundary phenomena like resilient higher-order topological insulators (HOTIs) and non-Hermitian skin effects (NHSE). Recently, time-multiplexed lattices in synthetic dimensions have emerged as a versatile platform for the investigation of these effects free of geometric restrictions.

View Article and Find Full Text PDF

Impacts of environmental parameters on sick building syndrome prevalence among residents: a walk-through survey in Rasht, Iran.

Arch Public Health

December 2024

Department of Environmental Sciences, Faculty of Natural Resources, University of Guilan, Someh Sara, Guilan, Iran.

Background: This study evaluated the prevalence of sick building syndrome (SBS) in Rasht, Iran, a subtropical climate with wetter cold season city, during the autumn and winter months of 2020, focusing on the effects of noise and ventilation.

Methods: A total of 420 residents completed the indoor air climate questionnaire (MM040EA), and a walk-through survey of 45 randomly selected residential units assessed environmental noise, ventilation rate, and luminous conditions.

Results: Approximately 38.

View Article and Find Full Text PDF

A rare phenomenon involving ventricular separation: a case report.

BMC Cardiovasc Disord

December 2024

Department of Electrocardiology, The Third Affiliated Hospital of Wenzhou Medical University, No.108 WansongRoad, Wenzhou, 325200, People's Republic of China.

Background: Ventricular separation is a multipart, extensive disease of the heart that hinders the electrical conduction of the cardiac system ventricular muscle, causing a bidirectional conduction block. The occurrence of ventricular separation suggests that the myocardium is in a state of severe ischemia, and the prognosis is generally poor. Herein, we present arescue case in which the extremely rare phenomenon of ventricular separation developed and was documented in realtime.

View Article and Find Full Text PDF

Understanding RNA-protein interactions is crucial for uncovering the mechanisms of cellular processes and can provide insights into the basis of various diseases, paving the way for the development of targeted therapeutic interventions. Exposure to stress conditions, such as hypoxia, leads to a drop in intracellular pH, which, in turn, alters the ionization states of amino acid residues and RNA bases, affecting the charge distribution and electrostatic interactions between RNA and proteins. In addition, pH also perturbs the structure and dynamics of proteins via the disruption of H-bonds and ionic interactions.

View Article and Find Full Text PDF

A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!