The rechargeable aluminum-ion battery (AIB) is a promising candidate for next-generation high-performance batteries, but its cathode materials require more development to improve their capacity and cycling life. We have demonstrated the growth of MoSe three-dimensional helical nanorod arrays on a polyimide substrate by the deposition of Mo helical nanorod arrays followed by a low-temperature plasma-assisted selenization process to form novel cathodes for AIBs. The binder-free 3D MoSe-based AIB shows a high specific capacity of 753 mAh g at a current density of 0.3 A g and can maintain a high specific capacity of 138 mAh g at a current density of 5 A g with 10 000 cycles. Raman, XPS, and TEM characterization results of the electrodes under different states confirm the reversible alloying conversion and intercalation hybrid mechanism during the discharge and charge cycles. All possible chemical reactions were proposed by the electrochemical curves and characterization. Further exploratory works on interdigital flexible AIBs and stretchable AIBs were demonstrated, exhibiting a steady output capacity under different bending and stretching states. This method provides a controllable strategy for selenide nanostructure-based AIBs for use in future applications of energy-storage devices in flexible and wearable electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c02831DOI Listing

Publication Analysis

Top Keywords

helical nanorod
12
nanorod arrays
12
high specific
8
specific capacity
8
mah current
8
current density
8
three-dimensional molybdenum
4
molybdenum diselenide
4
diselenide helical
4
arrays high-performance
4

Similar Publications

Carbon nanomaterials (CNMs), such as carbon nanotubes (CNTs), graphene quantum dots (GQDs), and carbon quantum dots (CQDs), are prevalent in biological systems and have been widely utilized in applications like environmental sensing and biomedical fields. While their presence in human matrices is projected to increase, the interfacial interactions between carbon-based nanoscopic platforms and biomolecular systems continue to remain underexplored. In this study, we investigated the effect of gelatin-sourced CQDs on the globular milk protein beta-lactoglobulin (BLG).

View Article and Find Full Text PDF

Real-time monitoring of reactive oxygen and nitrogen species (RONS) in skeletal muscle provides crucial insights into the cause-and-effect relationships between physical activity and health benefits. However, the dynamic production of exercise-induced RONS remains poorly explored, due to the lack of sensing tools that can conform to soft skeletal muscle while monitor RONS release during exercise. Here we introduce dual flexible sensors via twisting carbon nanotubes into helical bundles of fibers and subsequent assembling electrochemical sensing components.

View Article and Find Full Text PDF

Intrinsic Chirality Modulation and Biosensing Application of Helical Gold Nanorods by Anisotropic Etching.

Anal Chem

December 2024

Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.

The investigation of plasmonic chirality is a profound and intriguing topic, and the distinctive morphology of intrinsically chiral nanoparticles has prompted significant interest in the structure-activity relationship between particle morphology and chirality. In this work, the anisotropic etching of chiral helical gold nanorods (HGNRs) by a cetyltrimethylammonium bromide (CTAB)-HAuCl complex was observed with an interesting bidirectional variation of intrinsic chirality that initially enhanced and subsequently weakened, which was related with the diversity in CTAB distribution. In addition, an ultrasensitive and convenient sensing platform for acetylcholinesterase was developed based on the circular dichroism signal recovery of HGNRs caused by the dual inhibition of HGNR etching.

View Article and Find Full Text PDF

Hybridization chain reaction and magnetic beads-assisted highly sensitive detection of microRNA-21 with helical gold nanorods as dark-filed light scattering optical probe.

Talanta

December 2024

Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China. Electronic address:

As a promising cancer biomarker, microRNA-21 (miRNA-21) has attracted great attention. However, the assay sensitivity of miRNA-21 is highly demanded due to its low abundance. In this work, a highly sensitive sensing platform for miRNA-21 detection was developed based on hybridization chain reaction (HCR) and magnetic beads (MBs)-assisted cascade signal amplification strategy with helical gold nanorods (HGNRs) as dark-field light scattering probes.

View Article and Find Full Text PDF

Self-assembly of small molecules into supramolecular architectures is a sustainable alternative to new advanced material design. Herein, the design and synthesis of a self-assembling system containing four covalently linked hybrid guanine and cytosine (G∧C) units that were connected through bifunctional amines are reported. These tetra G∧C motifs were characterized and self-assembled in water and methanol to produce discrete nanostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!