Dopamine (DA) neurons are to encode reward prediction error (RPE), in addition to other signals, such as salience. While RPE is known to support learning, the role of salience in learning remains less clear. To address this, we recorded and manipulated VTA DA neurons in mice during fear extinction. We applied deep learning to classify mouse freezing behavior, eliminating the need for human scoring. Our fiber photometry recordings showed DA neurons in medial and lateral VTA have distinct activity profiles during fear extinction: medial VTA activity more closely reflected RPE, while lateral VTA activity more closely reflected a salience-like signal. Optogenetic inhibition of DA neurons in either region slowed fear extinction, with the relevant time period for inhibition differing across regions. Our results indicate salience-like signals can have similar downstream consequences to RPE-like signals, although with different temporal dependencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363446PMC
http://dx.doi.org/10.7554/eLife.54936DOI Listing

Publication Analysis

Top Keywords

fear extinction
16
lateral vta
12
medial lateral
8
dopamine neurons
8
vta activity
8
activity closely
8
closely reflected
8
vta
5
neurons
5
distinct signals
4

Similar Publications

Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.

View Article and Find Full Text PDF

Presenting unpaired unconditional stimuli (US) during extinction training reduces the renewal of conditional fear due to context change. The present study investigated whether this reduced return of fear is specific to the aversive US presented during acquisition or can also be observed after extinction with unpaired presentations of another aversive or of a non-aversive US. Using an ABA renewal paradigm that trained extinction in a context different from that of the acquisition, renewal and re-acquisition test phases, participants received five unpaired presentations of either the aversive US used during acquisition (Group Aversive-Same), an aversive US not presented during acquisition (Group Aversive-Different) or a non-aversive US (Group Non-aversive) during extinction training.

View Article and Find Full Text PDF

Perineuronal nets (PNNs) are specialized components of the extracellular matrix that play a critical role in learning and memory. In a Pavlovian fear conditioning paradigm, degradation of PNNs affects the formation and storage of fear memories. This study examined the impact of adolescent intermittent ethanol (AIE) exposure by vapor inhalation on the expression of PNNs in the adult rat prelimbic (PrL) and infralimbic (IfL) subregions of the medial prefrontal cortex.

View Article and Find Full Text PDF

Fear learning processes are believed to play a crucial role in the development and maintenance of anxiety and stress-related disorders. To integrate results across different studies, we conducted a systematic meta-analysis following PRISMA guidelines to examine differences in fear conditioning during fear acquisition, extinction, and extinction recall between individuals with anxiety-related or stress-related disorders and healthy participants. This analysis updates the work of Duits et al.

View Article and Find Full Text PDF

We considered predator-prey models which incorporated both an Allee effect and a new fear factor effect together, and where the predator predated the prey with a Holling type I functional response. We started off with a two-dimensional model where we found possible equilibria and examined their stabilities. By using the predator mortality rate as the bifurcation parameter, the model exhibited Hopf-bifurcation for the coexistence equilibrium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!