Physicochemical analysis of individual atmospheric aerosols at the most abundant sizes in the atmosphere (<1 μm) is analytically challenging, as hundreds to thousands of species are often present in femtoliter volumes. Vibrational spectroscopies, such as infrared (IR) and Raman, have great potential for probing functional groups in single particles at ambient pressure and temperature. However, the diffraction limit of IR radiation limits traditional IR microscopy to particles > ∼10 μm, which have less relevance to aerosol health and climate impacts. Optical photothermal infrared (O-PTIR) spectroscopy is a contactless method that circumvents diffraction limitations by using changes in the scattering intensity of a continuous wave visible laser (532 nm) to detect the photothermal expansion when a vibrational mode is excited by a tunable IR laser (QCL: 800-1800 cm or OPO: 2600-3600 cm). Herein, we simultaneously collect O-PTIR spectra with Raman spectra at a single point for individual particles with aerodynamic diameters <400 nm (prior to impaction and spreading) at ambient temperature and pressure, by also collecting the inelastically scattered visible photons for Raman spectra. O-PTIR and Raman spectra were collected for submicrometer particles with different substrates, particle chemical compositions, and morphologies (i.e., core-shell), as well as IR mapping with submicron spatial resolution. Initial O-PTIR analysis of ambient atmospheric particles identified both inorganic and organic modes in individual sub- and supermicrometer particles. The simultaneous IR and Raman microscopy with submicrometer spatial resolution described herein has considerable potential both in atmospheric chemistry and numerous others fields (e.g., materials and biological research).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c01495 | DOI Listing |
Anal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Physics, Washington State University, Pullman, WA 99163, USA.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.
View Article and Find Full Text PDFSci Adv
January 2025
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.
Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea.
The combination of molybdenum disulfide (MoS) with plasmonic nanomaterials has opened up new possibilities in biological applications by combining MoS's biocompatibility and high surface area with the optical sensitivity of plasmonic metals. These MoS-plasmonic hybrid systems hold great promise in areas such as biosensing, bioimaging, and phototherapy, where their complementary properties facilitate improved detection, real-time visualization, and targeted therapeutic interventions. MoS's adjustable optical features, combined with the plasmon resonance of noble metals such as gold and silver, enhance signal amplification, enabling detailed imaging and selective photothermal or photodynamic therapies while minimizing effects on healthy tissue.
View Article and Find Full Text PDFACS Sens
January 2025
Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan.
The unique characteristics of biological structures depend on the behavior of DNA sequences confined in a microscale cell under environmental fluctuations and dissipation. Here, we report a prominent difference in fluorescence from dye-modified single-stranded DNA in a light-induced assembly of DNA-functionalized heterogeneous probe particles in a microwell of several microliters in volume. Strong optical forces from the Mie scattering of microparticles accelerated hybridization, and the photothermal effect from the localized surface plasmons in gold nanoparticles enhanced specificity to reduce the fluorescence intensity of dye-modified DNA to a few %, even in a one-base mismatched sequence, enabling us to clearly highlight the single nucleotide polymorphisms in DNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!