Revealing the effect of water vapor pressure on the kinetics of thermal decomposition of magnesium hydroxide.

Phys Chem Chem Phys

Chemistry Laboratory, Department of Science Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan.

Published: June 2020

This study aims to establish an advanced kinetic theory for reactions in solid state and solid-gas systems, achieving a universal kinetic description over a range of temperature and partial pressure of reactant or product gases. The thermal decomposition of Mg(OH)2 to MgO was selected as a model reaction system, and the effect of water vapor pressure p(H2O) on the kinetics was investigated via humidity controlled thermogravimetry. The reaction rate of the thermal decomposition process at a constant temperature was systematically decreased by increasing the p(H2O) value, accompanied by an increase in the sigmoidal feature of mass-loss curves. Under nonisothermal conditions at a given heating rate, mass-loss curves shifted systematically to higher temperatures depending on the p(H2O) value. The kinetic behavior under different temperature and p(H2O) conditions was universally analyzed by introducing an accommodation function (AF) of the form (P°/p(H2O))a[1 - (p(H2O)/Peq(T))b], where P° and Peq(T) are the standard and equilibrium pressures, respectively, into the fundamental kinetic equation. Two kinetic approaches were examined based on the isoconversional kinetic relationship and a physico-geometrical consecutive reaction model. In both the kinetic approaches, universal kinetic descriptions are achieved using the modified kinetic equation with the AF. The kinetic features of thermal decomposition are revealed by correlating the results from the two universal kinetic approaches. Furthermore, advanced features for the kinetic understanding of thermal decomposition of solids revealed by the universal kinetic descriptions are discussed by comparing the present kinetic results with those reported previously for the thermal decomposition of Ca(OH)2 and Cu(OH)2.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp00446dDOI Listing

Publication Analysis

Top Keywords

thermal decomposition
24
universal kinetic
16
kinetic
14
kinetic approaches
12
water vapor
8
vapor pressure
8
mass-loss curves
8
kinetic equation
8
equation kinetic
8
kinetic descriptions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!