On the Nature of Charge-Injecting Contacts in Organic Field-Effect Transistors.

ACS Appl Mater Interfaces

Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.

Published: July 2020

Organic field-effect transistors (OFETs) are key enabling devices for plastic electronics technology, which has a potentially disruptive impact on a variety of application fields, such as health, safety, and communication. Despite the tremendous advancements in understanding the OFET working mechanisms and device performance, further insights into the complex correlation between the nature of the charge-injecting contacts and the electrical characteristics of devices are still necessary. Here, an in-depth study of the metal-organic interfaces that provides a direct correlation to the performance of OFET devices is reported. The combination of synchrotron X-ray spectroscopy, atomic force microscopy, electron microscopy, and theoretical simulations on two selected electron transport organic semiconductors with tailored chemical structures allows us to gain insights into the nature of the injecting contacts. This multiple analysis repeated at the different stages of contact formation provides a clear picture on the synergy between organic/metal interactions, interfacial morphology, and structural organization of the electrode. The simultaneous synchrotron X-ray experiments and electrical measurements of OFETs uncovers how the nature of the charge-injecting contacts has a direct impact on the injection potential of OFETs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c05106DOI Listing

Publication Analysis

Top Keywords

nature charge-injecting
12
charge-injecting contacts
12
organic field-effect
8
field-effect transistors
8
synchrotron x-ray
8
nature
4
contacts
4
contacts organic
4
transistors organic
4
transistors ofets
4

Similar Publications

Two donor-acceptor dyes with an -phenylene-linked carbazole electron donor and a benzothiazole-fused boron heterocyclic acceptor were designed, synthesized, and spectroscopically investigated. Due to the steric effects of boron heterocyclic units, the dyes demonstrate different conformations in the crystalline state. The presence of numerous hydrogen-bonding intermolecular interactions and the very weak π-π stacking in the molecular packing results in intense solid-state emission with photoluminescence quantum yields of 40 and 18% for crystals and 50 and 42% for host-based light-emitting layers.

View Article and Find Full Text PDF

On the Nature of Charge-Injecting Contacts in Organic Field-Effect Transistors.

ACS Appl Mater Interfaces

July 2020

Consiglio Nazionale delle Ricerche (CNR)-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.

Organic field-effect transistors (OFETs) are key enabling devices for plastic electronics technology, which has a potentially disruptive impact on a variety of application fields, such as health, safety, and communication. Despite the tremendous advancements in understanding the OFET working mechanisms and device performance, further insights into the complex correlation between the nature of the charge-injecting contacts and the electrical characteristics of devices are still necessary. Here, an in-depth study of the metal-organic interfaces that provides a direct correlation to the performance of OFET devices is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!