Currently, the use of electrical readout methods for the investigation of microtissue spheroids in combination with lab automation tools is hindered by the cable connections that are required to interrogate the on-chip-integrated electrodes. To overcome this limitation, we developed a wireless sensor scheme, which can detect the size variation of microtissues during long-term culturing and drug exposure assays. The sensor system includes an interrogation board, which is composed of an inductor-capacitor (LC) readout circuit, and the tissue culture platform with integrated split-ring sensors. The magnetic coupling between the LC circuit and the sensors enables the interrogation of the on-chip sensors without any wire connection to the culture platform. By optimizing the sensor dimensions and the LC resonance frequencies, we were able to avoid cross talk between neighboring sensors. We integrated 12 tissue compartments on a standard microscopy slide with a sensor-to-sensor pitch of 9 mm, which is in accordance with standard 96-well plate dimensions. As a proof-of-concept experiment for the developed system, we monitored continuously and during more than four days the growth inhibition of colon cancer microtissue spheroids that had been exposed to different concentrations of doxorubicin, a chemotherapeutic compound. The stability of the measurements during long-term culturing and the compatibility of the sensor scheme with standard lab equipment offer great potential for automated electrical microtissue spheroid characterization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115843 | PMC |
http://dx.doi.org/10.1021/acssensors.0c00481 | DOI Listing |
Tissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.
View Article and Find Full Text PDFSLAS Discov
January 2025
The University of Akron, Akron, OH, 44325, USA. Electronic address:
Three-dimensional (3D) tumor models provide physiologically relevant tumor environments and have become a major tool in cancer research and drug discovery. This article presents a protocol for creating a 3D organotypic tumor model by embedding a cancer cell spheroid within a collagen matrix containing dispersed fibroblasts. This model offers significant advantages over the conventional monolayer cell culture, monoculture spheroids of cancer cells, and intermixed co-culture of cancer and stromal cells by mimicking the spatial organization and mechanical properties of a solid tumor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
National Nanotechnology Research Center (UNAM) Bilkent University, Cankaya, Ankara, 06800, Türkiye.
In the existing development of extensive drug screening models, 3D cell cultures outshine conventional 2D monolayer cells by closely imitating the in vivo tumor microenvironment. This makes 3D culture a more physiologically relevant and convenient system in the regime of preclinical drug testing. In the nanomedicinal world, nanoconjugates as nanocarriers are largely hunted due to their capability of precisely binding to target cells and distributing essential dosages of therapeutic drugs with enhanced safety profiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!