Graphitic carbon nitride: a sustainable photocatalyst for organic pollutant degradation and antibacterial applications.

Environ Sci Pollut Res Int

Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.

Published: January 2021

Recently, graphitic carbon nitride (GCN) has been found to be of great interest in various sustainable applications. In this study, a simple preparation method using urea was utilized to synthesize GCN. In order to understand various morphological, structural, and optical aspects of the as-prepared sample, GCN was characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, Brunauere-Emmette-Teller (BET), scanning electron microscopy (SEM), and diffused reflectance spectra (DRS) analysis. The visible-light-driven photocatalytic activity of prepared GCN was analyzed for various cationic dyes (Crystal violet, rose bengal, rhodamine B, auramine O, methylene blue) and anionic dyes (phenol red, xylenol orange, cresol red, methyl orange). The calculated efficiencies of degradation and values of apparent rate constant for all dye samples suggested that cationic dyes are more actively degraded using GCN than anionic dyes. In addition, GCN was further analyzed for its splendid antibacterial activity against pathogenic bacteria (Klebsiella pneumonia and Escherichia coli). The synthesized photocatalyst holds a bright scope for the efficient remediation of organic pollutants and bacterial disinfection in wastewater. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-09432-6DOI Listing

Publication Analysis

Top Keywords

graphitic carbon
8
carbon nitride
8
gcn analyzed
8
cationic dyes
8
anionic dyes
8
gcn
6
nitride sustainable
4
sustainable photocatalyst
4
photocatalyst organic
4
organic pollutant
4

Similar Publications

Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs are frequently used to control and treat the frequency of seizures.

View Article and Find Full Text PDF

Microbial fuel cells to monitor natural attenuation around groundwater plumes.

Environ Sci Pollut Res Int

January 2025

School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.

This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.

View Article and Find Full Text PDF

The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.

View Article and Find Full Text PDF

In this study, the adsorption of aqueous Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) on biochars at diverse synthesized temperatures was evaluated. The optimal sample BC-800 achieved superior adsorption performance of Cu(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) at 10-50 mg L initial concentration. Due to the larger surface area (349.

View Article and Find Full Text PDF

This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10  of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!