Background: In recent years, the mechanical concept of intervertebral disc regeneration has become more and more popular due to the increasing awareness of the importance of preservation of spine movement. Interestingly, there is increasing evidence, however, that dynamic stabilization systems may compensate non-physiological loads, limit pathological movement, normalize disc height and intradiscal pressure, and provide an adaptive environment for disc regeneration.
Case Summary: The patient was a 54-year-old man, who presented with a 10-year history of mechanical back pain, which had become progressively serious and radiated into the left lower limb with numbness 3 mo prior. He had decreased muscle strength (class IV) of the left dorsal extensor and plantar flexor. Magnetic resonance imaging scans showed L3-S1 disc degeneration and L4-L5 disc herniation. Because the patient did not respond to various conservative treatments, he underwent a posterior L4-5 discectomy with fixation of the BioFlex dynamic stabilization system (Bio-Spine, Seoul, Korea). Preoperative symptoms were relieved and lumbar function was markedly improved after the operation. L4-L5 disc rehydration of instrumented segment was noted on magnetic resonance imaging at the 2-year follow-up.
Conclusion: Rehydration of the degenerated disc in our patient indicates that the BioFlex dynamic stabilization system may promote disc regeneration. Further research is needed to provide more evidence to support lumbar disc rehydration in the bridged segment using this system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7262709 | PMC |
http://dx.doi.org/10.12998/wjcc.v8.i10.1958 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!