A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mineral dust increases the habitability of terrestrial planets but confounds biomarker detection. | LitMetric

AI Article Synopsis

  • Scientists want to find Earth-like planets outside our solar system that could support life.
  • Dust in the atmosphere of these planets can change temperatures, making it easier for them to be habitable.
  • The presence of dust can also make it harder to see important gases in the atmosphere when we look for signs of life, so future studies need to include the effects of dust.

Article Abstract

Identification of habitable planets beyond our solar system is a key goal of current and future space missions. Yet habitability depends not only on the stellar irradiance, but equally on constituent parts of the planetary atmosphere. Here we show, for the first time, that radiatively active mineral dust will have a significant impact on the habitability of Earth-like exoplanets. On tidally-locked planets, dust cools the day-side and warms the night-side, significantly widening the habitable zone. Independent of orbital configuration, we suggest that airborne dust can postpone planetary water loss at the inner edge of the habitable zone, through a feedback involving decreasing ocean coverage and increased dust loading. The inclusion of dust significantly obscures key biomarker gases (e.g. ozone, methane) in simulated transmission spectra, implying an important influence on the interpretation of observations. We demonstrate that future observational and theoretical studies of terrestrial exoplanets must consider the effect of dust.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283277PMC
http://dx.doi.org/10.1038/s41467-020-16543-8DOI Listing

Publication Analysis

Top Keywords

mineral dust
8
habitable zone
8
dust
6
dust increases
4
increases habitability
4
habitability terrestrial
4
terrestrial planets
4
planets confounds
4
confounds biomarker
4
biomarker detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!