AI Article Synopsis

  • Tissue engineering aims to create or replace failing organs, but challenges exist in producing affordable, thick tissues quickly.
  • Researchers hypothesize that reducing oxygen levels (hypoxia) enhances the ability of dermal fibroblasts to secrete factors that promote blood vessel formation (angiogenesis).
  • Experiments showed that medium conditioned by fibroblasts under hypoxic conditions (DF-Hx) significantly improved the growth and networking of endothelial cells compared to those grown in normoxic conditions (DF-Nx), indicating potential for future tissue engineering applications.

Article Abstract

Tissue engineering is an emerging and promising concept to replace or cure failing organs, but its clinical translation currently encounters issues due to the inability to quickly produce inexpensive thick tissues, which are necessary for many applications. To circumvent this problem, we postulate that cells secrete the optimal cocktail required to promote angiogenesis when they are placed in physiological conditions where their oxygen supply is reduced. Thus, dermal fibroblasts were cultivated under hypoxia (2% O) to condition their cell culture medium. The potential of this conditioned medium was tested for human umbilical vein endothelial cell proliferation and for their ability to form capillary-like networks into fibrin gels. The medium conditioned by dermal fibroblasts under hypoxic conditions (DF-Hx) induced a more significant proliferation of endothelial cells compared to medium conditioned by dermal fibroblasts under normoxic conditions (DF-Nx). In essence, doubling time for endothelial cells in DF-Hx was reduced by 10.4% compared to DF-Nx after 1 week of conditioning, and by 20.3% after 2 weeks. The DF-Hx allowed the formation of more extended and more structured capillary-like networks than DF-Nx or commercially available medium, paving the way to further refinements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283357PMC
http://dx.doi.org/10.1038/s41598-020-66145-zDOI Listing

Publication Analysis

Top Keywords

capillary-like networks
12
dermal fibroblasts
12
conditioned medium
8
structured capillary-like
8
networks fibrin
8
fibrin gels
8
medium conditioned
8
conditioned dermal
8
endothelial cells
8
medium
5

Similar Publications

MiR-125b-5p ameliorates ox-LDL-induced vascular endothelial cell dysfunction by negatively regulating TNFSF4/TLR4/NF-κB signaling.

BMC Biotechnol

January 2025

Department of Emergency Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot City, Inner Mongolia Autonomous Region, 010017, China.

Background: Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell dysfunction plays a crucial role in the progression of atherosclerosis (AS). Although miR-125b-5p is known to be involved in cardiovascular and cerebrovascular disorders, its function in ox-LDL-induced endothelial injury is still not well understood.

Methods: An in vitro AS cell model was established by exposing human umbilical vein endothelial cells (HUVECs) to 100 µg/mL ox-LDL for 24 h.

View Article and Find Full Text PDF

The discovery of endothelial progenitor cells has revolutionized our understanding of postnatal blood vessel formation, with endothelial colony-forming cells (ECFCs) emerging as key players in vasculogenesis. Among various ECFC sources, cord blood-derived ECFCs (CB-ECFCs) are of particular interest due to their superior proliferative and clonogenic potential and their ability to promote vascular network formation. Human embryonic stem cell-derived endothelial cells (hESC-ECs) have also shown potential in regenerative medicine, though their vasculogenic efficacy remains unclear compared to CB- and adult blood-derived ECFCs (AB-ECFCs).

View Article and Find Full Text PDF

The microvascular bed plays a crucial role in establishing nutrient exchange and waste removal, as well as maintaining tissue metabolic activity in the human body. However, achieving microvascularization of engineered 3D tissue constructs is still an unsolved challenge. In this work, we developed biomimetic cell-laden hydrogel microfibers recapitulating oriented microvascular capillary-like networks by using a 3D bioprinting technique combined with microfluidics-assisted coaxial wet-spinning.

View Article and Find Full Text PDF

In the body, capillary beds fulfill the metabolic needs of cells by acting as the sites of diffusive transport for vital gasses and nutrients. In artificial tissues, replicating the scale and complexity of capillaries has proved challenging, especially in a three-dimensional context. In order to better develop thick artificial tissues, it will be necessary to recreate both the form and function of capillaries.

View Article and Find Full Text PDF

Hierarchically vascularized and suturable tissue constructs created through angiogenesis from tissue-engineered vascular grafts.

Acta Biomater

November 2024

Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Victoria 3010, Australia; Aikenhead Centre for Medical Discovery (ACMD), Fitzroy, Victoria 3065, Australia. Electronic address:

A major roadblock in implementing engineered tissues clinically lies in their limited vascularization. After implantation, such tissues do not integrate with the host's circulation as quickly as needed, commonly resulting in loss of viability and functionality. This study presents a solution to the vascularization problem that could enable the survival and function of large, transplantable, and vascularized engineered tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!