In the face of global warming and unprecedented coral bleaching, a new avenue of research is focused on relatively rare algal symbionts and their ability to confer thermal tolerance to their host by association. Yet, thermal tolerance is just one of many physiological attributes inherent to the diversity of symbiodinians, a result of millions of years of competition and niche partitioning. Here, we revealed that competition among cocultured symbiodinians alters nutrient assimilation and compound production with species-specific responses. For Cladocopium goreaui, a species ubiquitous within stable coral associations, temperature stress increased sensitivity to competition eliciting a shift toward investment in cell replication, i.e., putative niche exploitation. Meanwhile, competition led Durusdinium trenchii, a thermally tolerant "background" symbiodinian, to divert resources from immediate growth to storage. As such, competition may be driving the dominance of C. goreaui outside of temperature stress, the destabilization of symbioses under thermal stress, the repopulation of coral tissues by D. trenchii following bleaching, and ultimately undermine the efficacy of symbiont turnover as an adaptive mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7490369 | PMC |
http://dx.doi.org/10.1038/s41396-020-0697-0 | DOI Listing |
Chemistry
January 2025
Xi'an Jiaotong University, School of Chemistry, No.28, West Xianning Road, 710049, Xi'an, CHINA.
Due to the diverse chemical and physical properties of functional groups, mild and controllable ligation methods are often required to construct complex drugs and functional materials. To make diverse sets of products with tunable physicochemical properties, it is also useful to employ complimentary ligation methods that adopt the same starting materials. Here, we disclose the efficient and modular synthesis of amides or thioamides through the chemical ligation of acyl silanes with amines, simply by turning a light on or off.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
CESTER-Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
This study explores the experimental and theoretical optimization of process parameters to improve the quality of 3D-printed parts produced using the Fused Deposition Modeling technique. To ensure the cost-effective production of high-quality components, advancements in printing strategies are essential. This research identifies optimal 3D printing strategies to enhance the quality of finished products.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Laboratory of Plant Pathology and Bioproducts, Faculty of Agronomic Sciences, University of Tarapacá, Av. General Velásquez 1775, Arica 1000000, Chile.
The region of Arica and Parinacota hosts unexplored remote sites with unique characteristics suitable for developing novel agricultural bioproducts. Notable locations include Jurasi Hot Springs, Polloquere Hot Springs, and Amuyo Lagoons, featuring open pools fed by thermal mountain springs. These geothermal sites harbor bacteria with plant growth-promoting activities, particularly interesting to the strains J19, TP22, A20, and A3.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
Coral thermal tolerance is intimately linked to their symbiotic relationships with photosynthetic microorganisms. However, the potential compensatory role of symbiotic photosynthetic bacteria in supporting Symbiodiniaceae photosynthesis under extreme summer temperatures remains largely unexplored. Here, we examined the seasonal variations in Symbiodiniaceae and photosynthetic bacterial community structures in Pavona decussata corals from Weizhou Island, Beibu Gulf, China, with particular emphasis on the role of photosynthetic bacteria under elevated temperature conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!