Despite advances in the treatment of acute myeloid leukemia (AML), novel therapies are needed to induce deeper and more durable clinical response. Bispecific T-cell Engager (BiTE) molecules, which redirect patient T cells to lyse tumor cells, are a clinically validated modality for hematologic malignancies. Due to broad AML expression and limited normal tissue expression, fms-related tyrosine kinase 3 (FLT3) is proposed to be an optimal BiTE molecule target. Expression profiling of FLT3 was performed in primary AML patient samples and normal hematopoietic cells and nonhematopoietic tissues. Two novel FLT3 BiTE molecules, one with a half-life extending (HLE) Fc moiety and one without, were assessed for T-cell-dependent cellular cytotoxicity (TDCC) of FLT3-positive cell lines , and FLT3 protein was detected on the surface of most primary AML bulk and leukemic stem cells but only a fraction of normal hematopoietic stem and progenitor cells. FLT3 protein detected in nonhematopoietic cells was cytoplasmic. FLT3 BiTE molecules induced TDCC of FLT3-positive cells , reduced tumor growth and increased survival in AML mouse models Both molecules exhibited reproducible pharmacokinetic and pharmacodynamic profiles in cynomolgus monkeys , including elimination of FLT3-positive cells in blood and bone marrow. In cultures of primary AML samples, patient T cells induced TDCC of FLT3-positive target cells. Combination with PD-1 blockade increased BiTE activity. These data support the clinical development of an FLT3 targeting BiTE molecule for the treatment of AML.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-19-1093 | DOI Listing |
J Hematol Oncol
April 2021
Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY, 10595, USA.
Antibodies and chimeric antigen receptor-engineered T cells (CAR-T) are increasingly used for cancer immunotherapy. Small molecule inhibitors targeting cellular oncoproteins and enzymes such as BCR-ABL, JAK2, Bruton tyrosine kinase, FLT3, BCL-2, IDH1, IDH2, are biomarker-driven chemotherapy-free agents approved for several major hematological malignancies. LOXO-305, asciminib, "off-the-shelf" universal CAR-T cells and BCMA-directed immunotherapeutics as well as data from clinical trials on many novel agents and regimens were updated at the 2020 American Society of Hematology (ASH) Annual Meeting.
View Article and Find Full Text PDFMol Cancer Ther
September 2020
Amgen Research, Amgen Inc., South San Francisco, California.
Biomark Res
November 2019
1New York Medical College, Valhalla, NY 10595 USA.
Purpose Of Review: With the introduction of new targeted therapies for hematological malignancies comes the challenges of both assessing the risk of developing an IFD while being treated with these agents, as well as managing the drug--drug interactions between azole antifungals and the agents.
Recent Findings: New targeted therapies for hematological malignancy include chimeric antigen receptor T cells (CAR T cells), Bi-specific T-cell Engager (BiTE) blinatumomab, and the antibody-drug conjugate (ADC) of calicheamicin inotuzumab ozogamicin for acute lymphoblasic leukemia (ALL) and lymphoma; the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib and phosphatidylinositol 3-kinase (PI3Kδ) inhibitor idelalisib for lymphoma and graft-versus-host disease (GVHD); FMS-like tyrosine kinase 3 (FLT3) inhibitors, such as midostaurin, sorafenib and gilteritinib for acute myeloid leukemia (AML); and the BCL-2 inhibitor venetoclax for a range of hematological malignancies including lymphoma and leukemia. This review summarizes recommendations for IFD prophylaxis using these therapies and evidence for managing concomitant azole administration.
Curr Opin Hematol
March 2018
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Purpose Of Review: This review discusses the rationale, efficacy, and toxicity of a variety of immune approaches being evaluated in the therapy of acute myeloid leukemia (AML) including naked and conjugated monoclonal antibodies, bispecific T-cell engager antibodies, and immune checkpoint blockade via antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed-death 1 (PD-1).
Recent Findings: The stellar success of immune therapies that harness the power of T cells in solid tumors and an improved understanding of the immune system in patients with hematologic malignancies have resulted in major efforts to develop immune therapies for the treatment of patients with AML. Monoclonal antibodies in AML therapy include naked antibodies against AML surface antigens such as CD33 (e.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!