Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetorheological (MR) fluids have been successfully utilized in versatile fields but are still limited by their relatively inferior long-term dispersion stability. Herein, bio-inspired passion fruit-like FeO@C nanospheres were fabricated via a simple hydrothermal and calcination approach to tackle the settling challenge. The unique structures provide sufficient active interfaces for the penetration of carrier mediums, leading to preferable wettability between particles and medium oils. Compared with the bare FeO nanoparticle suspension, the resulting FeO@C nanosphere-based MR fluid exhibits desirable stability and relatively low field-off viscosity even at a high particle concentration up to 35 vol %.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c00301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!