Comparison of the Hydration Characteristics of UltraHighPerformance and Normal Cementitious Materials.

Materials (Basel)

Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Jiading 201804, China.

Published: June 2020

The hydration mechanism of ultrahighperformance cementitious materials (UHPC) departs considerably from that of normal cementitious materials (NC). In this study, the strength, isothermal calorimetry, chemical shrinkage, Xray diffraction (XRD), and thermogravimetry (TG) methods are used to determine the hydration characteristics of UHPC and NC that contain silica fume (SF). A simple device was modified to test the chemical shrinkage for longterm growth, and the ultimate chemical shrinkage is obtained by semiempirical formula fitting. It is found that the degree of hydration of UHPC is significantly lower than that of NC. The hydration kinetics analyzed using the KrstulovicDabic model shows that the hydration process of NC is type NGID, which is characterized by gentle and prolonged hydration. However, the hydration of UHPC is type NGD with the distinguishing features of early sufficiency and later stagnation. The growth of the strength, exothermic evolution, and phase development of UHPC is decelerated as the hydration process proceeds, which confirms the weak development tendency of hydration at the later stage. In addition, the effect of SF on the hydration of UHPC is minor, and the higher content of SF is beneficial to the hydration at the later stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321614PMC
http://dx.doi.org/10.3390/ma13112594DOI Listing

Publication Analysis

Top Keywords

cementitious materials
12
chemical shrinkage
12
hydration uhpc
12
hydration
11
hydration characteristics
8
normal cementitious
8
hydration process
8
hydration stage
8
uhpc
6
comparison hydration
4

Similar Publications

The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.

View Article and Find Full Text PDF

With 3D printing technology, fiber-reinforced polymer composites can be printed with radical shapes and properties, resulting in varied mechanical performances. Their high strength, light weight, and corrosion resistance are already advantages that make them viable for physical civil infrastructure. It is important to understand these composites' behavior when used in concrete, as their association can impact debonding failures and overall structural performance.

View Article and Find Full Text PDF

The findings highlight the potential for broadening the use of shell aggregates in construction applications. This research investigated the viability of incorporating milled seashells as fine sand replacements for natural calcareous sand in the production of self-compacting mortar. These results highlight a promising avenue for coastal industries to reduce waste while enhancing the durability of construction materials.

View Article and Find Full Text PDF

Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace cement in the preparation of low-carbon and environmentally friendly grouting materials. The research systematically evaluates the impact of waste glass powder (WGP) on the fresh properties (particularly the stability and rheological characteristics) of cement-based grouting materials under various conditions, including WGP content (0-40%), the addition of NaOH activator (NaO content of 4%) or not, and water-solid ratio (/ 0.

View Article and Find Full Text PDF

Soil stabilization technology has been applied for a long time in the infrastructure construction field. Currently, the use of waste materials as stabilizer is growing in attention, because it promises to develop green and high-performance soil stabilization efficiency. In this work, three common waste materials, including rice husk ash (RHA), steel slag (SS) and iron tailing (IT) powder, were selected and synergistically utilized with cement to prepare stabilized soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!