The enzyme driven changes in plant cell wall structure during fruit ripening result in debranching, depolymerization and solubilization of pectin polysaccharides, which has an effect in terms of the postharvest quality losses in fruit. Atomic force microscopy (AFM) has revealed that diluted alkali soluble pectins (DASP) from fruit and vegetables have an interesting tendency to self-assemble into regular structures. However, the mechanism is not yet fully understood. The current study is aimed at investigating the role of neutral sugars, namely galactose, rhamnose and arabinose in the formation of the branched structure of DASP. β-galactosidase, α-L-rhamnosidase and α-L-arabinofuranosidase enzymes were used for the treatment of DASP extracted from Golden Delicious apple flesh ( cv. Golden Delicious). The effects of the selective degradation of pectic polysaccharides after 15, 30, 60, 90 and 120 min of incubation were observed using AFM. The α-L-rhamnosidase enzyme activity on pectin extracted with NaCO did not cause any visible or measurable degradation of the molecular structure. The moderate effects of β-galactosidase enzymatic treatment suggested the possible role of galactose in the branching of DASP molecules deposited on mica. Data obtained for α-L-arabinofuranosidase indicated the crucial role of arabinose in the formation and preservation of the highly branched structure of the DASP fraction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312408PMC
http://dx.doi.org/10.3390/ijms21114064DOI Listing

Publication Analysis

Top Keywords

atomic force
8
force microscopy
8
β-galactosidase α-l-rhamnosidase
8
α-l-rhamnosidase α-l-arabinofuranosidase
8
pectin extracted
8
arabinose formation
8
branched structure
8
structure dasp
8
golden delicious
8
structure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!