Renal morphology was evaluated in 2 siblings with Wiskott-Aldrich syndrome (WAS) aged 12 and 4 years. They gave a typical history of recurrent episodes of respiratory infection and presented with microhematuria of glomerular origin and proteinuria. The study disclosed a membranoproliferative glomerulonephritis with IgA mesangial deposition in the elder child, while immunofluorescence was negative in the younger. The data indicate that (1) a specific nephropathy does not exist in WAS and (2) the IgA nephropathy is the result of recurrent infections and of related formation of IgA immune complexes scarcely removed by a deficient reticuloendothelial system. This view is consistent with presenting features in WAS (microhematuria, episodes of macrohematuria, proteinuria, Henoch-Schönlein syndrome) and with the fact that it takes years to develop as indicated by the negativity of immunofluorescence in the younger patient.

Download full-text PDF

Source

Publication Analysis

Top Keywords

wiskott-aldrich syndrome
8
iga
4
iga glomerulonephritis
4
glomerulonephritis wiskott-aldrich
4
syndrome renal
4
renal morphology
4
morphology evaluated
4
evaluated siblings
4
siblings wiskott-aldrich
4
syndrome aged
4

Similar Publications

For many genetic disorders, there are no specific metabolic biomarkers nor analytical methods suitable for newborn population screening, even where highly effective preemptive treatments are available. The direct measurement of signature peptides as a surrogate marker for the protein in dried blood spots (DBSs) has been shown to successfully identify patients with Wilson Disease (WD) and three life-threatening inborn errors of immunity, X-linked agammaglobulinemia (XLA), Wiskott-Aldrich syndrome (WAS), and adenosine deaminase deficiency (ADAD). A novel proteomic-based multiplex assay to detect these four conditions from DBS using high-throughput LC-MS/MS was developed and validated.

View Article and Find Full Text PDF

Gene therapy (GT) as a groundbreaking approach holds promise for treating many diseases including immune deficiencies and blood disorders. GT can benefit patients suffering from these diseases, especially those without matched donors or who are at risk after hematopoietic stem cell transplantation (HSCT). Due to all the advances in the field of GT, its main challenge is still gene delivery.

View Article and Find Full Text PDF

LINC01305 and LAD1 Co-Regulate CTTN and N-WASP Phosphorylation, Mediating Cytoskeletal Reorganization to Promote ESCC Metastasis.

Mol Carcinog

January 2025

Institute of Tissue Engineering and Stem Cells, Beijing Anzhen Nanchong Hospital of Capital Medical University, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.

Esophageal squamous cell carcinoma (ESCC) is prone to metastasis and is a leading cause of mortality. The cytoskeleton is closely related to cell morphology and movement; however, little research has been conducted on ESCC metastasis. In this study, we found that the anchoring filament protein ladinin 1 (LAD1) specifically binds to LINC01305 for co-regulating the level of modulating cortactin proteins (CTTN) and neuronal Wiskott-Aldrich syndrome protein (N-WASP) phosphorylation, which mediates cytoskeletal reorganization and affects the metastasis of ESCC cells.

View Article and Find Full Text PDF

Nuclear actin polymerization was reported to control different nuclear processes, but its regulation is poorly understood. Here, we show that N-WASP can trigger the formation of nuclear N-WASP/F-actin nodules. While a cancer hotspot mutant of N-WASP lacking the VCA domain (V418fs) had a dominant negative function on nuclear F-actin, an even shorter truncation mutant found in melanoma (R128*) strongly promoted nuclear actin polymerization.

View Article and Find Full Text PDF

The WAVE complex in developmental and adulthood brain disorders.

Exp Mol Med

January 2025

Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.

Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!