A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pivotal Role of Interdigitation in Interleaflet Interactions: Implications from Molecular Dynamics Simulations. | LitMetric

AI Article Synopsis

  • The study investigates how the unique lipid composition of the inner leaflet of plasma membranes affects the formation of raft-like domains, which are structures important for cellular functions.
  • Using coarse-grained molecular dynamics simulations, researchers found that while certain lipid mixtures (like DOPC and Chol) don’t typically form domains in symmetric membranes, they can show phase separation when paired with a specific opposing leaflet composition (including sphingomyelin).
  • The findings highlight that the interdigitation of acyl chains (how lipid tails fit into each other) significantly influences the distribution of cholesterol and overall phase behavior in these asymmetric membranes.

Article Abstract

The asymmetric lipid composition in plasma membranes within the inner leaflet is not typically suitable for domain formation. Thus elucidation of the likelihood of the formation or stability of a raft-like domain in the inner leaflet is necessary. Herein we investigated the phase behavior of asymmetric membranes using coarse-grained molecular dynamics simulations. The lipid leaflet comprising dioleoylphosphatidylcholine (DOPC) and cholesterol (Chol) does not typically show well-developed domains in symmetric bilayer membranes; however, it does separate into liquid ordered (L) and liquid disordered (L) phases when the opposing leaflet containing sphingomyelin (SM), DOPC, and Chol demonstrates domain formation. We determine that interdigitated acyl chains modulated the partitioning of Chol in the opposing leaflet, resulting in phase separation. Similarly, the acyl chain length of SM within the opposing leaflet affected the phase behavior of the leaflet. Our results reveal the crucial role of interdigitation in determining the phase status in asymmetric membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c01317DOI Listing

Publication Analysis

Top Keywords

opposing leaflet
12
role interdigitation
8
molecular dynamics
8
dynamics simulations
8
inner leaflet
8
domain formation
8
phase behavior
8
asymmetric membranes
8
leaflet phase
8
leaflet
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: