The protein hormone insulin exists in various oligomeric forms, and a key step in binding its cellular receptor is dissociation of the dimer. This dissociation process and its corresponding association process have come to serve as paradigms of coupled (un)folding and (un)binding more generally. Despite its fundamental and practical importance, the mechanism of insulin dimer dissociation remains poorly understood. Here, we use molecular dynamics simulations, leveraging recent developments in umbrella sampling, to characterize the energetic and structural features of dissociation in unprecedented detail. We find that the dissociation is inherently multipathway with limiting behaviors corresponding to conformational selection and induced fit, the two prototypical mechanisms of coupled folding and binding. Along one limiting path, the dissociation leads to detachment of the C-terminal segment of the insulin B chain from the protein core, a feature believed to be essential for receptor binding. We simulate IR spectroscopy experiments to aid in interpreting current experiments and identify sites where isotopic labeling can be most effective for distinguishing the contributions of the limiting mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774804PMC
http://dx.doi.org/10.1021/acs.jpcb.0c03521DOI Listing

Publication Analysis

Top Keywords

mechanisms coupled
8
coupled unfolding
8
unfolding unbinding
8
dimer dissociation
8
dissociation
6
insulin
4
insulin dissociates
4
dissociates diverse
4
diverse mechanisms
4
unbinding protein
4

Similar Publications

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Evaluating sex and line differences in successive negative contrast and ethanol consumption using alcohol preferring and high alcohol drinking rats.

Alcohol Clin Exp Res (Hoboken)

January 2025

Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University Indianapolis, Indianapolis, Indiana, USA.

Background: The loss of a job or relationship are a couple of examples of unexpected reward loss. Life events, such as these can induce negative emotional reactions (e.g.

View Article and Find Full Text PDF

Analysis of the CHS Gene Family Reveals Its Functional Responses to Hormones, Salinity, and Drought Stress in Moso Bamboo ().

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.

View Article and Find Full Text PDF

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they are inadequate in addressing the requirements for reduced latency and the efficient processing and analysis of large-scale data. To tackle these challenges, this paper introduces a zero-trust access control framework that integrates blockchain technology with inner-product encryption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!