Textbook procedures require the use of individual aptamers enriched in SELEX libraries which are subsequently chemically synthesized after their biochemical characterization. Here we show that this reduction of the available sequence space of large libraries and thus the diversity of binding molecules reduces the labelling efficiency and fidelity of selected single aptamers towards different strains of the human pathogen Pseudomonas aeruginosa compared to a polyclonal aptamer library enriched by a whole-cell-SELEX involving fluorescent aptamers. The library outperformed single aptamers in reliable and specific targeting of different clinically relevant strains, allowed to inhibit virulence associated cellular functions and identification of bound cell surface targets by aptamer based affinity purification and mass spectrometry. The stunning ease of this FluCell-SELEX and the convincing performance of the P. aeruginosa specific library may pave the way towards generally new and efficient diagnostic techniques based on polyclonal aptamer libraries not only in clinical microbiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756519 | PMC |
http://dx.doi.org/10.1002/chem.202000213 | DOI Listing |
Biosensors (Basel)
January 2025
Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
With the goal of fast and accurate diagnosis of infectious diseases, this study presents a novel electrochemical biosensor that employs a refined aptamer (C9t) for the detection of spike (S) protein SARS-CoV-2 variants in a flexible multielectrode aptasensor array with PoC capabilities. Two aptamer modifications were employed: removing the primer binding sites and including two dithiol phosphoramidite anchor molecules. Thus, reducing fabrication time from 24 to 3 h and increasing the stability and sparseness for multi-thiol aptasensors compared to a standard aptasensor using single thiols, without a reduction in aptamer density.
View Article and Find Full Text PDFDiabetologia
January 2025
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA.
Type 1 diabetes is an autoimmune disease characterised by the destruction of pancreatic beta cells, resulting in lifelong insulin dependence. Although exogenous insulin can maintain glycaemic control, this approach does not protect residual or replacement pancreatic beta cells from immune-mediated death. Current therapeutics designed to protect functional beta cell mass or promote beta cell proliferation and regeneration can have off-target effects, resulting in higher dose requirements and adverse side effects.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
Cancer immunotherapy has revolutionized cancer treatment by harnessing the body's immune system to recognize and attack tumors. Over the past 25 years, the use of blocking antibodies has fundamentally transformed the landscape of cancer therapy. However, despite extensive research, agonist antibodies targeting costimulatory receptors such as ICOS, GITR, OX40, CD27, and 4-1BB have consistently underperformed in clinical trials over the past 15 years, failing to meet the anticipated success.
View Article and Find Full Text PDFCirc Heart Fail
January 2025
Hospital of the University of Pennsylvania, Philadelphia (S.G., J.D.A., B.P., M.J.D., O.S., O.E., P.Z., T.P.C., J.A.C.).
Background: Iron deficiency (ID) is currently defined as a serum ferritin level <100 or 100 to 299 ng/mL with transferrin saturation (TSAT) <20%. Serum ferritin and TSAT are currently used to define absolute and functional ID. However, individual markers of iron metabolism may be more informative than current arbitrary definitions of ID.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127 Bonn, Germany.
Splanchnic vein thrombosis (SVT), which is particularly prevalent in myeloproliferative neoplasms (MPNs), has a multifactorial pathomechanism involving the anticoagulant protein C (PC) pathway. To better characterize the hypercoagulable state in SVT we assessed its key enzymes thrombin and activated PC (APC). The study population included 73 patients with SVT, thereof 36 MPN+, confirmed by bone marrow biopsy, 37 MPN-, and 30 healthy controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!