BACKGROUND Myocardial ischemia reperfusion (I/R) injury is associated with complex pathophysiological changes characterized by pH imbalance, the accumulation of lipid peroxidation products acrolein and 4-hydroxy -2-nonenal, and the depletion of ATP levels. Cardioprotective interventions, designed to address individual mediators of I/R injury, have shown limited efficacy. The recently identified enzyme ATPGD1 (Carnosine Synthase), which synthesizes histidyl dipeptides such as carnosine, has the potential to counteract multiple effectors of I/R injury by buffering intracellular pH and quenching lipid peroxidation products and may protect against I/R injury METHODS AND RESULTS We report here that β-alanine and carnosine feeding enhanced myocardial carnosine levels and protected the heart against I/R injury. Cardiospecific overexpression of ATPGD1 increased myocardial histidyl dipeptides levels and protected the heart from I/R injury. Isolated cardiac myocytes from ATPGD1-transgenic hearts were protected against hypoxia reoxygenation injury. The overexpression of ATPGD1 prevented the accumulation of acrolein and 4-hydroxy -2-nonenal-protein adducts in ischemic hearts and delayed acrolein or 4-hydroxy -2-nonenal-induced hypercontracture in isolated cardiac myocytes. Changes in the levels of ATP, high-energy phosphates, intracellular pH, and glycolysis during low-flow ischemia in the wild-type mice hearts were attenuated in the ATPGD1-transgenic hearts. Two natural dipeptide analogs (anserine and balenine) that can either quench aldehydes or buffer intracellular pH, but not both, failed to protect against I/R injury. CONCLUSIONS Either exogenous administration or enhanced endogenous formation of histidyl dipeptides prevents I/R injury by attenuating changes in intracellular pH and preventing the accumulation of lipid peroxidation derived aldehydes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429021PMC
http://dx.doi.org/10.1161/JAHA.119.015222DOI Listing

Publication Analysis

Top Keywords

i/r injury
32
overexpression atpgd1
12
lipid peroxidation
12
acrolein 4-hydroxy
12
histidyl dipeptides
12
injury
10
cardiospecific overexpression
8
atpgd1 carnosine
8
carnosine synthase
8
myocardial ischemia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!