A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Seeking the true time: Exploring otolith chemistry as an age-determination tool. | LitMetric

Fish otoliths' chronometric properties make them useful for age and growth rate estimation in fisheries management. For the Eastern Baltic Sea cod stock (Gadus morhua), unclear seasonal growth zones in otoliths have resulted in unreliable age and growth information. Here, a new age estimation method based on seasonal patterns in trace elemental otolith incorporation was tested for the first time and compared with the traditional method of visually counting growth zones, using otoliths from the Baltic and North seas. Various trace elemental ratios, linked to fish metabolic activity (higher in summer) or external environment (migration to colder, deeper habitats with higher salinity in winter), were tested for age estimation based on assessing their seasonal variations in concentration. Mg:Ca and P:Ca, both proxies for growth and metabolic activity, showed greatest seasonality and therefore have the best potential to be used as chemical clocks. Otolith image readability was significantly lower in the Baltic than in the North Sea. The chemical (novel) method had an overall greater precision and percentage agreement among readers (11.2%, 74.0%) than the visual (traditional) method (23.1%, 51.0%). Visual readers generally selected more highly contrasting zones as annuli whereas the chemical readers identified brighter regions within the first two annuli and darker zones thereafter. Visual estimates produced significantly higher, more variable ages than did the chemical ones. Based on the analyses in our study, we suggest that otolith microchemistry is a promising alternative ageing method for fish populations difficult to age, such as the Eastern Baltic cod.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfb.14422DOI Listing

Publication Analysis

Top Keywords

age growth
8
eastern baltic
8
growth zones
8
zones otoliths
8
age estimation
8
trace elemental
8
traditional method
8
baltic north
8
metabolic activity
8
age
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!