The catalytic performance of Fe supported on nickel phosphate (NiP) was evaluated for the removal of bisphenol A (BPA) by catalytic wet air oxidation (CWAO) at 140 °C and 25 bar of pure oxygen pressure. The prepared NiP and Fe/NiP materials were fully characterized by XRD, N-physisorption, H-TPR, TEM, and ICP analysis. Iron (Fe/NiP) impregnation of NiP support enhanced the BPA removal efficiency from 37.0 to 99.6% when CWAO was performed. This catalyst was highly stable given the operating conditions of acidic medium, high temperature, and high pressure. The Fe/NiP catalyst showed an outstanding catalytic activity for oxidation of BPA, achieving almost complete removal of BPA in 180 min at a concentration of 300 mg/L, using 4 g/L of Fe/NiP. No iron leaching was detected after the CWAO of BPA. The stability of Fe/NiP was performed over three consecutive cycles, noting that BPA conversion was not affected and iron leaching was negligible. Therefore, this catalyst (Fe/NiP) could be considered as an innocuous and effective long-lasting catalyst for the oxidation of harmful organic molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-09176-3DOI Listing

Publication Analysis

Top Keywords

catalytic wet
8
wet air
8
air oxidation
8
iron leaching
8
bpa
7
fe/nip
6
catalyst
5
catalytic
4
oxidation
4
oxidation high
4

Similar Publications

Water contamination is a result of the excessive use of antibiotics nowadays. Owing to this environmental toxicity, photocatalytic degradation is the primary approach to non-biological degradation for their removal. In this context, zerovalent Bi-doped g-CN/BiMoO [g-CN/Bi@BiMoO] ternary nanocomposite was prepared using the wet impregnation method.

View Article and Find Full Text PDF

Hydrothermal liquefaction (HTL) is a promising technology for converting wet biomass to liquid fuels. However, the biocrude yield and quality in this process are unsatisfactory without catalysts. Herein, a Ru/ZrO-SiO catalyst was prepared with the NaBH reducing method for the HTL of .

View Article and Find Full Text PDF

Efficient CO2 capture at concentrations between 400-2000 ppm is essential for maintaining air quality in a habitable environment and advancing carbon capture technologies. This study introduces NICS-24 (National Institute of Chemistry Structures No. 24), a Zn-oxalate 3,5-diamino-1,2,4-triazolate framework with two distinct square-shaped channels, designed to enhance CO2 capture at indoor-relevant concentrations.

View Article and Find Full Text PDF

Active learning-assisted directed evolution.

Nat Commun

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

Directed evolution (DE) is a powerful tool to optimize protein fitness for a specific application. However, DE can be inefficient when mutations exhibit non-additive, or epistatic, behavior. Here, we present Active Learning-assisted Directed Evolution (ALDE), an iterative machine learning-assisted DE workflow that leverages uncertainty quantification to explore the search space of proteins more efficiently than current DE methods.

View Article and Find Full Text PDF

A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!