Spontaneous broadband electroencephalography (EEG) demonstrates short moments of stability in the spatial distribution of the head-surface voltage topography. This phenomenon underlies the premise behind segmenting multichannel EEG into topographically defined brain states, known as EEG microstates. Microstate segmentation methods commonly identify representative topographical configurations based on clustering applied to a subset of voltage maps selected at the time series points of greatest strength in the neuroelectric field. These moments are well-reasoned to best represent periods of momentary stability in the voltage topography, and consequently, points of greatest signal relative to noise. Yet, more direct empirical evidence for these assumptions is warranted, and the consistency of this phenomenon across individuals has not been characterized. In the present investigation, the association between electric field strength and topographic dissimilarity of temporally adjacent samples of EEG were characterized in a large sample of healthy adults engaged in quiet rest. Samples of individuals' EEG time series high in electric field strength were found to be topographically similar relative to adjacent time series samples. The strong phase-synchronized actvity of neuronal populations therefore coincides with momentary stability in the topographic voltage configuration, providing robust empirical support for the basic premise underlying segmentation of broadband EEG into microstates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10548-020-00780-7 | DOI Listing |
ACS Appl Electron Mater
December 2024
CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA.
We generated asynchronous functional networks (aFNs) using a novel method called optimal causation entropy and compared aFN topology with the correlation-based synchronous functional networks (sFNs), which are commonly used in network neuroscience studies. Functional magnetic resonance imaging (fMRI) time series from 212 participants of the National Consortium on Alcohol and Neurodevelopment in Adolescence study were used to generate aFNs and sFNs. As a demonstration of how aFNs and sFNs can be used in tandem, we used multivariate mixed effects models to determine whether age interacted with node efficiency to influence connection probabilities in the two networks.
View Article and Find Full Text PDFFundam Res
November 2024
Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea.
Lung cancer continues to be the second most common cancer diagnosed and the main cause of cancer-related death globally, which requires novel and effective treatment strategies. When considering treatment options, non-small cell lung cancer (NSCLC) remained a challenge, seeking new therapeutic strategies High-power microwave (HPM) progressions have facilitated the advancement of new technologies as well as improvements to those already in use. The impact of HPM on NSCLC has not been investigated before.
View Article and Find Full Text PDFFundam Res
November 2024
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
Electronic packaging is an essential branch of electronic engineering that aims to protect electronic, microelectronic, and nanoelectronic systems from environmental conditions. The design of electronic packaging is highly complex and requires the consideration of multi-physics phenomena, such as thermal transport, electromagnetic fields, and mechanical stress. This review presents a comprehensive overview of the multiphysics coupling of electric, magnetic, thermal, mechanical, and fluid fields, which are crucial for assessing the performance and reliability of electronic devices.
View Article and Find Full Text PDFDiabetol Metab Syndr
December 2024
Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, People's Republic of China.
Objective: Obesity has been recognized as a risk factor for cerebrovascular diseases, with observational studies suggesting a heightened incidence of stroke. However, the genetic epidemiology field has yet to reach a consensus on the causal relationship and genetic overlap between ischemic stroke (IS) and obesity.
Methods: We utilized linkage disequilibrium score regression, high-definition likelihood, and local analysis of variant associations to assess the genetic correlation between body mass index (BMI) and IS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!