The coronavirus disease 2019 (COVID-19) pandemic is resulting in ethical decisions regarding resource allocation. Prioritisation reflects established practices that regulate the distribution of finite resources when demand exceeds supply. However, discrimination based on sex, race or age has no role in prioritisation unless clearly justified. The risk posed by COVID-19 is higher for elderly people than for younger people, so older adults should be prioritised in preventive measures. In the case of people who already have COVID-19, healthcare professionals might prioritise those most likely to survive. Making decisions based on chronological age alone is not justified; in addition to age, other aspects that determine theoretical life expectancy must be taken into account. Individualised correct prioritisation in the allocation of scarce resources is essential to good clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265102 | PMC |
http://dx.doi.org/10.15420/ecr.2020.14 | DOI Listing |
PLoS One
January 2025
NIE-Indian Council of Medical Research-National Institute of Epidemiology, Chennai, India.
Background: Judicious utilisation of tertiary care facilities through appropriate risk stratification assumes priority, in a raging pandemic, of the nature of delta variant-predominated second wave of COVID-19 pandemic in India. Prioritisation of tertiary care, through a scientifically validated risk score, would maximise recovery without compromising individual safety, but importantly without straining the health system.
Methods: De-identified data of COVID-19 confirmed patients admitted to a tertiary care hospital in South India, between April 1, 2021 and July 31, 2021, corresponding to the peak of COVID-19 second wave, were analysed after segregating into 'survivors' or 'non-survivors' to evaluate the risk factors for COVID-19 mortality at admission and formulate a risk score with easily obtainable but clinically relevant parameters for accurate patient triaging.
PLoS One
January 2025
Department of Mathematics, Konkuk University, Seoul, Republic of Korea.
Mathematical and statistical methods are invaluable in epidemiological investigations, enhancing our understanding of disease transmission dynamics and informing effective control measures. In this study, we presented a method to estimate transmissibility using patient-level data, with application to the 2015 MERS outbreak at Pyeongtaek St. Mary's Hospital, the Republic of Korea.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.
T-cell response plays an important role in SARS-CoV-2 immunogenicity. For people living with HIV (PWH) and solid organ transplant (SOT) recipients there is limited evidence on the reliability of commercially available T-cell tests. We assessed 173 blood samples from 81 participants (62 samples from 35 PWH; 111 samples from 46 SOT recipients [lung and kidney]) with two commercial SARS-CoV-2 Interferon-γ (IFN-γ) release assays (IGRA; SARS-CoV-2 IGRA by Euroimmun, and IGRA SARS-CoV-2 by Roche).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.
Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD).
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
Post-acute coronavirus disease 2019 syndrome (PACS), following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (COVID-19), is typically characterized by long-term debilitating symptoms affecting multiple organs and systems. Unfortunately, there is currently a lack of effective treatment strategies. Altered gut microbiome has been proposed as one of the plausible mechanisms involved in the pathogenesis of PACS; extensive studies have emerged to bridge the gap between the persistent symptoms and the dysbiosis of gut microbiome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!