Background: Peritoneal fibrosis (PF) is a frequent complication caused by peritoneal dialysis (PD). Peritoneal mesothelial cells (PMCs), the first barrier of the peritoneum, play an important role in maintaining structure and function in the peritoneum during PD. Mesothelial-mesenchymal transition (MMT) and oxidative stress of PMCs are two key processes of PF.

Purpose: To elucidate the efficacy and possible mechanism of asiaticoside inhibition of MMT and ROS generation in TGF-β1-induced PF in human peritoneal mesothelial cells (HPMCs).

Methods: MMT and ROS generation of HPMCs were induced by TGF-β1. To explain the anti-MMT and antioxidant role of asiaticoside, varied doses of asiaticoside, oxygen radical scavenger (NAC), TGF-β receptor kinase inhibitor (LY2109761) and Nrf2 inhibitor (ML385) were used separately. Immunoblots were used to detect the expression of signaling associated proteins. DCFH-DA was used to detect the generation of ROS. Transwell migration assay and wound healing assay were used to verify the capacity of asiaticoside to inhibit MMT. Immunofluorescence assay was performed to observe the subcellular translocation of Nrf2 and expression of HO-1.

Results: Asiaticoside inhibited TGF-β1-induced MMT and suppressed Smad signaling in a dose-dependent manner. Migration and invasion activities of HPMCs were decreased by asiaticoside. Asiaticoside decreased TGF-β1-induced ROS, especially in a high dose (150 μM) for 6 h. Furthermore, ML385 partly abolished the inhibitory effect of asiaticoside on MMT, ROS and p-Smad2/3.

Conclusions: Asiaticoside inhibited the TGF-β1-induced MMT and ROS via Nrf2 activation, thus protecting the peritoneal membrane and preventing PF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7257216PMC
http://dx.doi.org/10.1186/s11658-020-00226-9DOI Listing

Publication Analysis

Top Keywords

mmt ros
16
peritoneal mesothelial
12
asiaticoside
10
mesothelial-mesenchymal transition
8
oxidative stress
8
human peritoneal
8
mesothelial cells
8
ros generation
8
asiaticoside inhibited
8
inhibited tgf-β1-induced
8

Similar Publications

Dihydromyricetin/montmorillonite intercalation compounds ameliorates DSS-induced colitis: Role of intestinal epithelial barrier, NLRP3 inflammasome pathway and gut microbiota.

Int J Pharm

December 2024

Department of Gastroenterology, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Key Laboratory of Digestive Diseases, Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China. Electronic address:

Dihydromyricetin (DHM), the primary active compound in vine tea possesses various pharmacological effects such as anti-inflammatory and antioxidant properties, along with high biosafety. However, its oral delivery remains a significant challenge. Montmorillonite (MMT), the primary component of bentonite, is a commonly used drug in the clinical treatment of gastrointestinal diseases and serves as an excellent drug carrier due to its intercalation capability.

View Article and Find Full Text PDF

Peritoneal dialysis (PD) serves as a home-based kidney replacement therapy with increasing utilization across the globe. However, long-term use of high-glucose-based PD solution incites repeated peritoneal injury and inevitable peritoneal fibrosis, thus compromising treatment efficacy and resulting in ultrafiltration failure eventually. In the present study, we utilized human mesothelial MeT-5A cells for the in vitro experiments and a PD mouse model for in vivo validation to study the pathophysiological mechanisms underneath PD-associated peritoneal fibrosis.

View Article and Find Full Text PDF

Berberine-doped montmorillonite nanosheet for photoenhanced antibacterial therapy and wound healing.

J Colloid Interface Sci

December 2024

Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:

Bacterial infections pose a substantial threat to human health, particularly with the emergence of antibiotic-resistant strains. Therefore, it is essential to develop novel approaches for the efficient treatment of bacterial diseases. This study presents a therapeutic approach involving BBR@MMT nanosheets (NSs), wherein montmorillonite (MMT) was loaded with berberine (BBR) through an ion intercalation reaction to sterilize and promote wound healing.

View Article and Find Full Text PDF

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism.

View Article and Find Full Text PDF

Abnormal activation of the intestinal mucosal immune system, resulting from damage to the intestinal mucosal barrier and extensive invasion by pathogens, contributes to the pathogenesis of inflammatory bowel disease (IBD). Current first-line treatments for IBD have limited efficacy and significant side effects. An innovative HS-releasing montmorillonite nanoformulation (DPs@MMT) capable of remodeling intestinal mucosal immune homeostasis, repairing the mucosal barrier, and modulating gut microbiota is developed by electrostatically adsorbing diallyl trisulfide-loaded peptide dendrimer nanogels (DATS@PDNs, abbreviated as DPs) onto the montmorillonite (MMT) surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!