α-Synuclein (α-Syn) aggregation and amyloid formation is directly linked with Parkinson's disease pathogenesis. However, the early events involved in this process remain unclear. Here, using the in vitro reconstitution and cellular model, we show that liquid-liquid phase separation of α-Syn precedes its aggregation. In particular, in vitro generated α-Syn liquid-like droplets eventually undergo a liquid-to-solid transition and form an amyloid hydrogel that contains oligomers and fibrillar species. Factors known to aggravate α-Syn aggregation, such as low pH, phosphomimetic substitution and familial Parkinson's disease mutations, also promote α-Syn liquid-liquid phase separation and its subsequent maturation. We further demonstrate α-Syn liquid-droplet formation in cells. These cellular α-Syn droplets eventually transform into perinuclear aggresomes, the process regulated by microtubules. This work provides detailed insights into the phase-separation behaviour of natively unstructured α-Syn and its conversion to a disease-associated aggregated state, which is highly relevant in Parkinson's disease pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41557-020-0465-9DOI Listing

Publication Analysis

Top Keywords

liquid-liquid phase
12
phase separation
12
parkinson's disease
12
α-syn
8
α-syn aggregation
8
disease pathogenesis
8
droplets eventually
8
α-synuclein aggregation
4
aggregation nucleates
4
nucleates liquid-liquid
4

Similar Publications

Interfacial Dripping Faucet: Generating Monodisperse Liquid Lenses.

Phys Rev Lett

December 2024

Carlos III University of Madrid, Thermal and Fluids Engineering Department, Avenida de la Universidad, 30 (Sabatini building), 28911 Leganés (Madrid), Spain.

We present a surface analog to a dripping faucet, where a viscous liquid slides down an immiscible meniscus. Periodic pinch-off of the dripping filament is observed, generating a succession of monodisperse floating lenses. We show that this interfacial dripping faucet can be described analogously to its single-phase counterpart, replacing surface tension by the spreading coefficient, and even undergoes a transition to a jetting regime.

View Article and Find Full Text PDF

Background: An increasing body of evidence indicates that dysregulation of liquid-liquid phase separation (LLPS) in cellular processes is implicated in the development of diverse tumors. Nevertheless, the association between LLPS and the prognosis, as well as the tumor immune microenvironment, in individuals with colon cancer remains poorly understood.

Methods: We conducted a comprehensive evaluation of the LLPS cluster in 1010 colon cancer samples from the TCGA and GEO databases, utilizing the expression profiles of LLPS-related prognostic differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Validated LC-MS/MS Method for the Determination of Paxalisib on Mouse Dried Blood Spots: An Application to Pharmacokinetic Study in Mice.

Biomed Chromatogr

February 2025

Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Medchal-Malkajgiri, Hyderabad, Telangana, India.

Paxalisib is a dual PI3K/mTOR inhibitor, being used in advanced cancer treatment. In this research, we report a validated LC-MS/MS method for quantifying paxalisib from mouse dried blood spot (DBS). We validated the method in-line with the FDA guidelines.

View Article and Find Full Text PDF

Ginkgolide B (GB) is the main active ginkgolide in Ginkgo biloba leaves extract. Pharmacological study suggested that GB exhibits protective effect on nervous system impaired and can be used in the treatment of dementia, cerebral insufficiency or related cognitive decline. However, the information on pharmacokinetics of GB in vivo was limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!