In Alzheimer's disease (AD), hippocampus-dependent memories underlie an extensive decline. The neuronal ensemble encoding a memory, termed engram, is partially recapitulated during memory recall. Artificial activation of an engram can restore memory in a mouse model of early AD, but its fate and the factors that render the engram nonfunctional are yet to be revealed. Here, we used repeated two-photon in vivo imaging to analyze fosGFP transgenic mice (which express enhanced GFP under the Fos promoter) performing a hippocampus-dependent memory task. We found that partial reactivation of the CA1 engram during recall is preserved under AD-like conditions. However, we identified a novelty-like ensemble that interfered with the engram and thus compromised recall. Mimicking a novelty-like ensemble in healthy mice was sufficient to affect memory recall. In turn, reducing the novelty-like signal rescued the recall impairment under AD-like conditions. These findings suggest a novel mechanistic process that contributes to the deterioration of memories in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41593-020-0652-4 | DOI Listing |
Am J Physiol Cell Physiol
December 2024
Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, P.R. China.
Ubiquitin‑specific protease 35 (USP35) was found to be involved in various tumor progression, but its role in breast cancer remains largely unknown. USP35 mRNA and protein expression in breast cancer tissues and cells were evaluated by qPCR and Western bolt (WB), respectively. Subsequently, flow cytometry and EDU labeling were used to evaluate breast cancer cell apoptosis and proliferation.
View Article and Find Full Text PDFArch Toxicol
December 2024
Faculty of Medicine, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany.
The Hedgehog (Hh) signaling pathway is essential for maintaining homeostasis during embryogenesis and in adult tissues. In the liver, dysregulation of this pathway often leads to liver cancer development. Recent studies also suggest that disturbances in the Hh pathway can affect liver metabolism in healthy livers through interactions with other signaling pathways, such as the Wnt/β-catenin pathway.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Chemistry, School of Science and Engineering, Saint Louis University, Saint Louis, Missouri 63103, United States.
Cryptosporidiosis is a diarrheal disease caused by the parasite resulting in over 100,000 deaths annually. Here, we present a structure-activity relationship study of the benzoic acid position (R) of pyrazolo[3,4-]pyrimidine lead SLU-2815 (), an inhibitor of parasite phosphodiesterase PDE1, resulting in the discovery of benzoxaborole SLU-10906 () as a benzoic acid bioisostere. Benzoxaborole is 10-fold more potent than against the parasite in a cell-based infection model (EC = 0.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
December 2024
Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.
Background: The cannabinoid type 2 receptors (CB2R) represent a target of increasing importance in neuroimaging due to its upregulation under various neuropathological conditions. Previous evaluation of [F]JHU94620 for the non-invasive assessment of the CB2R availability by positron emission tomography (PET) revealed favourable binding properties and brain uptake, however rapid metabolism, and generation of brain-penetrating radiometabolites have been its main limitations. To reduce the bias of CB2R quantification by blood-brain barrier (BBB)-penetrating radiometabolites, we aimed to improve the metabolic stability by developing -d and -d deuterated isotopologues of [F]JHU94620.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.
Isolation of primary keratinocyte stem cells (KSCs) from neonatal mouse epidermis is essential for studying skin physiology and related disorders. Traditional methods often struggle to balance keratinocyte proliferation and differentiation, and although recent advancements using low-calcium culture conditions have improved these techniques, protocols remain scattered. This study presents a streamlined approach to expand mouse KSCs in low-calcium medium (<0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!