Design and Fabrication of Low-cost Microfluidic Channel for Biomedical Application.

Sci Rep

Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Published: June 2020

This paper presents the design, simulation and low-cost fabrication of microfluidic channel for biomedical application. Channel is fabricated using soft lithography technique. Printed Circuit Board (PCB) is used to make the master for the channel. Channel pattern is transferred on PCB plate using toner transfer technique followed by ferric chloride etching. Paper also discusses, the issues involved in PCB based master fabrication and their viable solutions. Glass is used as substrate material and the channel is made of Sylgard 184 Polydimethylsiloxane (PDMS). Channel is interfaced with a syringe pump to observe the fluid flow. To predict the behavior of the channel, FEM simulation is performed using COMSOL Multiphysics 5.2a. There is a good match between the theoretical, simulation and test results. Finally, to test the biocompatibility of the channel, genomic DNA is passed through the channel and gel electrophoresis analysis is performed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280289PMC
http://dx.doi.org/10.1038/s41598-020-65995-xDOI Listing

Publication Analysis

Top Keywords

channel
10
microfluidic channel
8
channel biomedical
8
biomedical application
8
design fabrication
4
fabrication low-cost
4
low-cost microfluidic
4
application paper
4
paper presents
4
presents design
4

Similar Publications

Determination of Westcott g-factors for the assay of non-1/v nuclides using k-NAA.

Appl Radiat Isot

January 2025

Reactor Design Group, IGCAR, Kalpakkam, 603102, India.

This study examines the impact of the Westcott g-factor on the concentration of elements like In, Ir, Re, Yb, Eu and Lu, measured using neutron capture reactions (n,γ), specifically focusing on those reactions, whose thermal neutron capture cross-sections (σ ) deviate from the conventional '1/v' behaviour. These measurements are quantified using k₀-based neutron activation analysis. The Westcott g-factor for the non-1/v nuclides was calculated using the characterized neutron temperature (T) at PFTS irradiation channel of KAMINI reactor.

View Article and Find Full Text PDF

Purpose: The aim of this study was to measure the effects of frequency spacing (i.e., F2 minus F1) on spectral integration for vowel perception in simulated bilateral electric-acoustic stimulation (BiEAS), electric-acoustic stimulation (EAS), and bimodal hearing.

View Article and Find Full Text PDF

In silico drug repurposing at the cytoplasmic surface of human aquaporin 1.

PLoS One

January 2025

Genome and Structural Bioinformatics Group, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, United Kingdom.

Aquaporin 1 (AQP1) is a key channel for water transport in peritoneal dialysis. Inhibition of AQP1 could therefore impair water transport during peritoneal dialysis. It is not known whether inhibition of AQP1 occurs unintentionally due to off-target interactions of administered medications.

View Article and Find Full Text PDF

The Effects of Morphology and Hydration on Anion Transport in Self-Assembled Nanoporous Membranes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Ordered nanoporous polymer membranes offer opportunities for systematically probing the mechanisms of ion transport under confinement and for realizing useful materials for electrochemical devices. Here, we examine the impact of morphology and ion hydration on the transport of hydroxide and bromide anions in nanostructured polymer membranes with 1 nm scale pores. We use aqueous lyotropic self-assembly of an amphiphilic monomer, with a polymerizable surfactant to create direct hexagonal (H) and gyroid mesophases.

View Article and Find Full Text PDF

Words represent a uniquely human information channel-humans use words to express thoughts and feelings and to assign emotional valence to experience. Work from model organisms suggests that valence assignments are carried out in part by the neuromodulators dopamine, serotonin, and norepinephrine. Here, we ask whether valence signaling by these neuromodulators extends to word semantics in humans by measuring sub-second neuromodulator dynamics in the thalamus (N = 13) and anterior cingulate cortex (N = 6) of individuals evaluating positive, negative, and neutrally valenced words.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!