Drought and frost resistance vary between evergreen and deciduous Atlantic Forest canopy trees.

Funct Plant Biol

Laboratorio de Ecología Forestal y Ecofisiología, Instituto de Biología Subtropical, Universidad Nacional de Misiones (UNaM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Bertoni 85, Puerto Iguazú (N3370BFA), Misiones, Argentina; and Centro de Estudios Ambientales Integrados, Facultad de Ingeniería, Universidad Nacional de la Patagonia San Juan Bosco, CONICET, RN Nº 259 - Km 16.4, Esquel (9200), Chubut, Argentina.

Published: August 2020

Frost and drought are key stress factors limiting the growth and distribution of tree species. Resistance to stress involves energy costs that may result in trade-offs between different functional traits. Structures or mechanisms that can help to withstand stress imply differences in the carbon economy of the species. Although adaptive responses to frost and drought resistance are usually of a similar nature, they are rarely assessed simultaneously. We investigated these resistance mechanisms in 10 canopy tree species coexisting in the semi-deciduous subtropical forests of northern Argentina. We measured leaf lifespan, anatomical, photosynthetic and water relations traits and performed a thermal analysis in leaves to determined ice nucleation and tissue damage temperatures. Our results showed that evergreen and deciduous species have different adaptive responses to cope with freezing temperatures and water deficits. Evergreen species exhibited cold tolerance, while deciduous species were more resistant to hydraulic dysfunction and showed greater water transport efficiency. Further research is needed to elucidate resistance strategies to stress factors at the whole tree- and stand level, and possible links with hydraulic safety and efficiency among different phenological groups. This will allow us to predict the responses of subtropical forest species to changes in environmental conditions under climate change scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP19282DOI Listing

Publication Analysis

Top Keywords

evergreen deciduous
8
frost drought
8
stress factors
8
tree species
8
species adaptive
8
adaptive responses
8
deciduous species
8
species
7
resistance
5
drought frost
4

Similar Publications

Leaf Photosynthetic and Respiratory Thermal Acclimation in Terrestrial Plants in Response to Warming: A Global Synthesis.

Glob Chang Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China.

Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide.

View Article and Find Full Text PDF

Introduction: Levels of plant-based aeroallergens are rising as growing seasons lengthen and intensify with anthropogenic climate change. Increased exposure to pollens could increase risk for mortality from respiratory causes, particularly among older adults. We determined short-term, lag associations of four species classes of pollen (ragweed, deciduous trees, grass pollen and evergreen trees) with respiratory mortality (all cause, chronic and infectious related) in Michigan, USA.

View Article and Find Full Text PDF

The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.

View Article and Find Full Text PDF

Tip-to-base bark cross-sectional areas contribute to understanding the drivers of carbon allocation to bark and the functional roles of bark tissues.

New Phytol

January 2025

Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico.

Along their lengths, stems experience different functional demands. Because bark and wood traits are usually studied at single points on stems, it remains unclear how carbon allocation changes along tip-to-base trajectories across species. We examined bark vs wood allocation by measuring cross-sectional areas of outer and inner bark (OB and IB), IB regions (secondary phloem, cortex, and phelloderm), and wood from stem tips to bases of 35 woody angiosperm species of diverse phylogenetic lineages, climates, fire regimes, and bark morphologies.

View Article and Find Full Text PDF

A global analysis of plant nutrient limitation affected by atmospheric nitrogen and phosphorous deposition.

Front Plant Sci

December 2024

State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China.

Uncovering the response of plant functional types (PFTs) to nutrient limitation caused by atmospheric deposition is critical for assessing the health of terrestrial ecosystems under climate change conditions. However, it remains unclear how atmospheric deposition and underlying ecological factors affect PFTs globally. To address this, we compiled a global dataset of four PFTs, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!