Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An Al–Cu–Li aerospace alloy has been investigated to determine the order in which corrosion at different types of sites occurs in AA2099-T83. Specifically, the sequence of galvanic attack on intermetallic (IM) particles and other sites of AA2099-T83 was determined as a function of time, in 0.1 M NaCl, through the use of scanning electron microscopy and electron backscatter diffraction characterization techniques. The earliest attack occurred at isolated grains and grain boundaries and on Li-containing dispersoids. Similarly, some constituent IM particles showed evidence of trenching in the surrounding alloy matrix. These IM particles included Al7Cu2Fe and another group of unidentified particles which displayed complete trenching within the first 10 min of exposure. Al13(Fe, Mn)4 were next most active followed by Al37Fe12Cu2 with Al6(Fe,Mn) and large TiB2 particles being the least active.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1431927620001634 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!