Background: Multidrug-resistant tuberculosis (MDR-TB) is on the rise in China. This study used a dynamic Markov model to predict the longitudinal trends of MDR-TB in China by 2050 and to assess the effects of alternative control measures.
Methods: Eight states of tuberculosis transmission were set up in the Markov model using a hypothetical cohort of 100 000 people. The prevalence of MDR-TB and bacteriologically confirmed drug-susceptible tuberculosis (DS-TB) were simulated and MDR-TB was stratified into whether the disease was treated with the recommended regimen or not.
Results: Without any intervention changes to current conditions, the prevalence of DS-TB was projected to decline 67.7% by 2050, decreasing to 20 per 100 000 people, whereas that of MDR-TB was expected to triple to 58/100 000. Furthermore, 86.2% of the MDR-TB cases would be left untreated by the year of 2050. In the case where MDR-TB detection rate reaches 50% or 70% at 5% per year, the decline in prevalence of MDR-TB would be 25.9 and 36.2% respectively. In the case where treatment coverage was improved to 70% or 100% at 5% per year, MDR-TB prevalence in 2050 would decrease by 13.8 and 24.1%, respectively. If both detection rate and treatment coverage reach 70%, the prevalence of MDR-TB by 2050 would be reduced to 28/100 000 by a 51.7% reduction.
Conclusions: MDR-TB, especially untreated MDR-TB, would rise rapidly under China's current MDR-TB control strategies. Interventions designed to promote effective detection and treatment of MDR-TB are imperative in the fights against MDR-TB epidemics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281937 | PMC |
http://dx.doi.org/10.1186/s40249-020-00682-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!