Highly Selective Metal-Organic Framework Textile Humidity Sensor.

ACS Appl Mater Interfaces

Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Published: July 2020

The increase in demand and popularity of smart textiles brings new and innovative ideas to develop a diverse range of textile-based devices for our daily life applications. Smart textile-based sensors (TEX sensors) become attractive due to the potential to replace current solid-state sensor devices with flexible and wearable devices. We have developed a smart textile sensor for humidity detection using a metal-organic framework (MOF) as an active thin-film layer. We show for the first time the use of the Langmuir-Blodgett (LB) technique for the deposition of a MIL-96(Al) MOF thin film directly onto the fabrics containing interdigitated textile electrodes for the fabrication of a highly selective humidity sensor. The humidity sensors were made from two different types of textiles, namely, linen and cotton, with the linen-based sensor giving the best response due to better coverage of MOF. The TEX sensor showed a reproducible response after multiple cycles of measurements. After 3 weeks of storage, the sensor showed a moderate decrease in response. Moreover, TEX sensors showed a high level of selectivity for the detection of water vapors in the presence of several volatile organic compounds (VOCs). Interestingly, the selectivity is superior to some of the previously reported MOF-coated solid-state interdigitated electrode devices and textile sensors. The method herein described is generic and can be extended to other textiles and coating materials for the detection of toxic gases and vapors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467549PMC
http://dx.doi.org/10.1021/acsami.0c07532DOI Listing

Publication Analysis

Top Keywords

highly selective
8
metal-organic framework
8
humidity sensor
8
tex sensors
8
sensor humidity
8
sensor
7
sensors
5
selective metal-organic
4
textile
4
framework textile
4

Similar Publications

Variation of physical wood properties and effect of dasometric variables in trees growing in plantation.

Heliyon

January 2025

Escuela de Ingeniería Forestal, Instituto Tecnológico de Costa Rica, Apartado, 159-7050, Cartago, Costa Rica.

Physical properties were studied in commercial plantation of balsa established in Costa Rica. Among other variables studied, physical properties varied mainly for tree age, spacing, stand density, diameter, and height of trees, which we named dasometric conditions. The aim of this study was (i) to determine the variation of specific gravity (SG), air-dry density (AD), green density (GD), and green moisture content (GMC), (ii) to know the site effect and dasometric conditions on these properties, and (iii) to establish the relationship between the four physical properties.

View Article and Find Full Text PDF

Arbuscular mycorrhizal Fungi (AMF) are essential in agriculture and are often inter-linked with glomalin-related soil protein (GRSP) production which supports binding of aggregates, enhanced SOC and biological attributes. However, conservation agricultural practices in agroecosystem may have significant impact on AMF diversity, GRSP and soil quality-related parameters (SQRPs). This current experiment was implemented to gauge AMF conization percentage (AMF-CP), GSRP and significant changes on critical SQRPs, and to investigate the linkages between AMF-CP, GRSP and SQRPs as influenced by synergistic tillage and weed management in CA.

View Article and Find Full Text PDF

Moisture-responsive ultralow-hysteresis polymer ionogels for adhesion-switchable strain sensing.

Mater Horiz

January 2025

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.

Adhesion-switchable ultralow-hysteresis polymer ionogels are highly demanded in soft electronics to avoid debonding damage and signal distortion, yet the design and fabrication of such ionogels are challenging. Herein, we propose a novel method to design switchable adhesive ionogels by using binary ionic solvents with two opposite-affinity ionic components. The obtained ionogels exhibit moisture-induced phase separation, facilitating switchable adhesion with a high detaching efficiency (>99%).

View Article and Find Full Text PDF

Conceptualising Centres of Clinical Excellence: A Scoping Review.

BMJ Open

December 2024

Caring Futures Institute, College of Nursing and Health Science, Flinders University, Adelaide, South Australia, Australia.

Objectives: Centres of clinical excellence (CoCE) are healthcare facilities that provide excellent healthcare. However, despite their increasing prevalence, it is unclear how CoCE are identified and monitored. This paper explores how CoCE has been described in the literature, including its defining characteristics and selection and monitoring processes.

View Article and Find Full Text PDF

The recycling of low-concentration coal-bed methane (CBM) is environmentally beneficial and plays a crucial role in optimizing the energy mix. In this work, we present a strategy involving pore chemical modification to synthesize a series of bimetallic diamond coordination networks, namely CuIn(ina), CuIn(3-ain), and CuIn(3-Fina) (where ina = isonicotinic acid, 3-ain = 3-amino-isonicotinic acid, and 3-Fina = 3-fluoroisonicotinic acid). Among these, the amino-functionalized CuIn(3-ain) exhibits excellent CH adsorption capacity (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!