Ubiquitination and deubiquitination play a critical role in all aspects of cellular processes, and the enzymes involved are tightly regulated by multiple factors including posttranslational modifications like most other proteins. Dysfunction or misregulation of these enzymes could have dramatic physiological consequences, sometimes leading to diseases. Therefore, it is important to have a clear understanding of these regulatory processes. Here, we have reviewed the posttranslational modifications of deubiquitinating enzymes and their consequences on the catalytic activity, stability, abundance, localization, and interaction with the partner proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312083PMC
http://dx.doi.org/10.3390/ijms21114028DOI Listing

Publication Analysis

Top Keywords

deubiquitinating enzymes
8
posttranslational modifications
8
regulation deubiquitinating
4
enzymes
4
enzymes post-translational
4
post-translational modifications
4
modifications ubiquitination
4
ubiquitination deubiquitination
4
deubiquitination play
4
play critical
4

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Ubiquitination of OsCSN5 by OsPUB45 activates immunity by modulating the OsCUL3a-OsNPR1 module.

Sci Adv

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, with CSN5 serving as its critical catalytic subunit. However, the role of CSN5 in plant immunity is largely unexplored. Here, we found that suppression of in rice enhances resistance against the fungal pathogen and the bacterial pathogen pv.

View Article and Find Full Text PDF

Background: Hallmark pathologies of Alzheimer's Disease (AD) include the accumulation of both extracellular amyloid and intracellular tau proteins. While a significant body of knowledge exists surrounding the role of the protein aggregates in the context of AD, research supporting these as targets for therapeutic development have yielded inconsistent findings. One significant barrier is the inability to restore cognitive function despite the successful clearance of these proteins.

View Article and Find Full Text PDF

Cancers of the mesothelium, such as malignant mesothelioma (MM), historically have been attributed solely to exposure to asbestos. Recent large scale genetic and genomic functional studies now show that approximately 20% of all human mesotheliomas are causally linked to highly penetrant inherited (germline) pathogenic mutations in numerous cancer related genes. The rarity of these mutations in humans makes it difficult to perform statistically conclusive genetic studies to understand their biological effects.

View Article and Find Full Text PDF

The CYLD-PARP1 feedback loop regulates DNA damage repair and chemosensitivity in breast cancer cells.

Proc Natl Acad Sci U S A

January 2025

Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Department of Biochemistry and Molecular Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.

Poly(ADP-ribose) polymerase 1 (PARP1) plays a crucial role in DNA repair and genomic stability maintenance. However, the regulatory mechanisms governing PARP1 activity, particularly through deubiquitination, remain poorly elucidated. Using a deubiquitinase (DUB) library binding screen, we identified cylindromatosis (CYLD) as a bona fide DUB for PARP1 in breast cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!