Photoelectrochromic Devices with Enhanced Power Conversion Efficiency.

Materials (Basel)

Renewable Energy Laboratory, Physics Department, University of Patras, 26500 Rion, Greece.

Published: June 2020

In the present work, we propose a new architecture for partly covered photoelectrochromic devices with a modified anode layout, so that the TiO film is deposited first on the substrate, covering a small part of its surface, followed by the WO film that covers the remaining device area. As a result, the TiO film can be subjected to the proper thermal and chemical treatment without affecting the electrochromic performance of the WO film. The proposed design led to photoelectrochromic (PEC) devices with a power conversion efficiency (PCE) four times higher than that of typical partly covered devices, with a measured maximum of 4.9%. This, in turn, enabled a reduction in the total area covered by the photovoltaic unit of the devices by four times (to 5% from 20%), thus reducing its visual obstruction, without affecting the depth, uniformity and speed of coloration. A detailed study of the parameters affecting the performance of the new devices revealed that, with the cover ratio decreasing, PCE was increasing. The photocoloration efficiency also exhibited the same trend for cover ratio values below 15%. Storage of the devices in short circuit conditions was found to accelerate optical reversibility without affecting their photovoltaic and optical performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321482PMC
http://dx.doi.org/10.3390/ma13112565DOI Listing

Publication Analysis

Top Keywords

photoelectrochromic devices
8
power conversion
8
conversion efficiency
8
partly covered
8
tio film
8
cover ratio
8
devices
6
devices enhanced
4
enhanced power
4
efficiency work
4

Similar Publications

Self-validating photoelectrochemical/photoelectrochromic visual sensing platform for ciprofloxacin precise detection in milk.

Anal Chim Acta

November 2024

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Modern Agriculture Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:

Background: In the process of food production, ciprofloxacin (CIP), a highly prescribed fluoroquinolone antibiotic, is often excessively used to reduce the risk of bacterial infection. However, this overuse can cause severe harm to human health, including allergic responses, gastrointestinal complications, and potential renal dysfunction. The development of a robust and precise detection method for CIP is crucial, given the interconnection between food security and human health.

View Article and Find Full Text PDF

Construction of dual-signal output sensing platform for different scene of rapid and sensitive ochratoxin A detection in corn.

Talanta

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:

Photoelectrochemical (PEC) is a highly sensitive and fast analytical method that can be used at low concentrations, while photoelectrochromic is a simple and low-cost method primarily utilized for high concentration detection. Therefore, we have developed a dual-signal output sensing platform based on both PEC and photoelectrochromism for rapid and sensitive OTA detection. The sensing platform is divided into signal generation (SG) region and signal output (SO) region, which modified with WO/BiVO photoactive nanocomposites and polyaniline (PANI), respectively.

View Article and Find Full Text PDF

LAMP-visualized photofuel cell self-powered dual-mode sensing platform for detection of transmissible gastroenteritis virus.

Talanta

July 2024

Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China. Electronic address:

The detection of transmissible gastroenteritis virus (TGEV) is of great significance to reduce the loss of pig industry. A LAMP-visualization/PFC self-powered dual-mode output sensor platform was constructed to detect TGEV by combining a simple and intuitive photoelectrochromic material with a highly sensitive PFC self-powered sensing platform without external power supply. The PFC sensing substrate was constructed using CdS nanoparticles modified ZnO NRs (CdS/ZnO NRs) as the photoanode, which exhibited high photoactivity, and Prussian blue (PB) as the cathode.

View Article and Find Full Text PDF

Reusable Colorimetric Biosensors on Sustainable Silk-Based Platforms.

ACS Appl Bio Mater

February 2024

Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona 08193, Spain.

In biosensor development, silk fibroin is advantageous for providing transparent, flexible, chemically/mechanically stable, biocompatible, and sustainable substrates, where the biorecognition element remains functional for long time periods. These properties are employed here in the production of point-of-care biosensors for resource-limited regions, which are able to display glucose levels without the need for external instrumentation. These biosensors are produced by photopatterning silk films doped with the enzymes glucose oxidase and peroxidase and photoelectrochromic molecules from the dithienylethene family acting as colorimetric mediators of the enzymatic reaction.

View Article and Find Full Text PDF

In this study, we synthesized a ternary transition metal sulfide, ZnCoS (ZCS-CE), using a one-step solvothermal method and explored its potential as a Pt-free counter electrode for dye-sensitized solar cells (DSSCs). Comprehensive investigations were conducted to characterize the structural, morphological, compositional, and electronic properties of the ZCS-CE electrode. These analyses utilized a range of techniques, including X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!