This paper presents the results of an experimental investigation on the material properties and self-healing ability of a blended cement mortar incorporating blast furnace slag (BFS). The effect of different types and Blaine fineness of BFS on the material properties and self-healing was investigated. Thirteen cement mixtures with BFS of different types and degrees of Blaine fineness are tested to evaluate the mechanical properties, namely compressive strength, bending strength, freeze-thaw, and accelerated carbonation. The pore structure is examined by means of mercury intrusion porosimetry. Seven blended mortar mixtures incorporating BFS for cement are used to evaluate the mechanical properties after applying freeze-thaw cycles until the relative dynamic modulus of elasticity reached 60%. The experimental results reveal that incorporating BFS improves the mechanical properties and self-healing ability. In the investigation of self-healing, smaller particle and high replacement ratios of BFS contribute to increasing the relative dynamic modulus of elasticity and decreasing the carbonation coefficient in the mortar after re-water curing. Moreover, BFS's larger particles and high replacement ratio are found to provide better self-healing ability. A regression equation is created to predict the relative dynamic modulus of elasticity in mortar considering the Blaine fineness, BFS replacement ratio, and curing conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321436PMC
http://dx.doi.org/10.3390/ma13112564DOI Listing

Publication Analysis

Top Keywords

properties self-healing
16
self-healing ability
16
material properties
12
blaine fineness
12
mechanical properties
12
relative dynamic
12
dynamic modulus
12
modulus elasticity
12
experimental investigation
8
investigation material
8

Similar Publications

[Preparation of multi-layer compound microcapsules and their application in self-healing of concrete cracks].

Sheng Wu Gong Cheng Xue Bao

January 2025

College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

Concrete is widely used in building construction, civil engineering, roads, bridges, etc., but concrete cracking remains a major issue in the engineering industry. To develop an effective and feasible concrete repair technology, this study combined microbial and microencapsulation technologies to prepare a multi-layer compound microcapsule using the piercing method.

View Article and Find Full Text PDF

Lutein-loaded multifunctional hydrogel dressing based on carboxymethyl chitosan for chronic wound healing.

Int J Biol Macromol

January 2025

National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Oxidative stress is a major contributor to the difficulties in chronic wound healing. Although antioxidant hydrogels have been developed, they are still insufficient for addressing the entire chronic wound healing process. In this study, a lutein-loaded multifunctional hydrogel dressing (Lutein/CMC/PVP/TA, Lutein/CPT) with synergistic antioxidation properties was developed by hydrogen bonding and electrostatic crosslinking of tannic acid (TA) with carboxymethyl chitosan (CMC) and polyvinylpyrrolidone (PVP).

View Article and Find Full Text PDF

This current study focusses on the investigation of the self-healing abilities of metallopolymers containing different kinds of metal complexes, which were processed by direct digital light processing (DLP) based three-dimensional (3D) printing. For this purpose, 2‑phenoxyethyl acrylate is mixed with ligand-containing monomers either based on triphenylmethyl(trt)-histidine or terpyridine, respectively. Either zinc(II) or nickel(II) salts are successfully applied for a complexation of the ligand monomers in solution and, subsequently, photopolymerization is performed.

View Article and Find Full Text PDF

Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins.

Biosensors (Basel)

January 2025

Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China.

Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance.

View Article and Find Full Text PDF

Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!