The interfacial zone between aggregate particles and asphalt mortar presents a significant effect on the strength of an asphalt mixture. In this paper, basalt, limestone, and diabase were selected, and the influence of these aggregates on the mechanical characteristics and microstructures of the interfacial zone was investigated. Nanoindentation was employed to measure the change law of mechanical behavior in the region of the interfacial zone, and corresponding viscoelastic parameters were deduced; microstructural morphology was observed by scanning electron microscopy, and the effect of the mineralogical components on the interfacial zone was analyzed as well. Results show that the mechanical behavior of the interfacial transition zone is complicated. The modulus and hardness of asphalt mortar decrease with the increases in the aggregate surface distance, and then keep stable after the distance is greater than 40 μm. Both the relaxation time and dissipated energy ratio of the interfacial zone affected by the different aggregate types show a similar change law. These states indicate that aggregate types have little influence on the stress dissipation of asphalt mortar. However, creep compliances that quantify the ability of the deformation resistance show a significant difference; microstructure morphologies of the interfacial zone are affected by aggregates obviously, and micro pores present a different distribution and state in the interfacial zone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321435 | PMC |
http://dx.doi.org/10.3390/ma13112558 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
Underwater superoleophobic and transparent (UST) films are promising in applications, such as advanced optical devices in marine environments. However, the mechanical robustness and durability in harsh environments of the existing UST films are still unsatisfactory. In this work, we present a free-standing nacre-inspired mineralized UST (NIM-UST) film with high aragonite content and excellent mechanical properties toward robust underwater superoleophobicity on two surfaces and transparency (94%) in harsh seawater environments.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany.
Background/purpose: Although clinical studies have suggested a link between non-axial forces and reduced longevity of cervical restorations, the underlying mechanisms require further numerical investigation. This in-silico study employed a cohesive zone model (CZM) to investigate interfacial damage in a cervical restoration subjected to different load directions.
Materials And Methods: A plane strain model of a maxillary premolar was established, with a wedge-shaped buccal cervical restoration.
Materials (Basel)
January 2025
College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China.
The incorporation of desert sand-mineral admixture improves the abrasion resistance of concrete. To prolong the service life of assembled concrete channels and mitigate the depletion of river sand resources, the effects of fly ash (FA), silica fume (SF), desert sand (DS), and basalt fiber (BF) on the mechanical properties and the abrasion resistance of concrete were examined, alongside an analysis of their microstructures to elucidate the underlying mechanisms of influence. The results indicated that the abrasion resistance strength of concrete mixed with 10% FA and 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China.
In this paper, the early drying shrinkage coefficients of different hydraulic cement mortars are calibrated through laboratory experiments for moderate-heat Portland cement (MHPC) and low-heat Portland cement (LHPC). By developing an improved mesoscale modeling approach, a 3D highly detailed simulation of concrete was generated, which incorporates the phases of mortar, aggregates, and interfacial transition zone (ITZ). The simulation result is in good agreement with the concrete early drying shrinkage experiment, exhibiting an error of less than 4.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA. Electronic address:
In this work we present a minimal structure-based model of protein diffusional search along local DNA amid protein binding and unbinding events on the DNA, taking into account protein-DNA electrostatic interactions and hydrogen-bonding (HB) interactions or contacts at the interface. We accordingly constructed the protein diffusion-association/dissociation free energy surface and mapped it to 1D as the protein slides along DNA, maintaining the protein-DNA interfacial HB contacts that presumably dictate the DNA sequence information detection. Upon DNA helical path correction, the protein 1D diffusion rates along local DNA can be physically derived to be consistent with experimental measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!