Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Over the past few decades, nanotechnology has developed rapidly. Various nanomaterials have been gradually applied in different fields. As a kind of two-dimensional (2D) layered nanomaterial with a graphene-like structure, molybdenum disulfide (MoS) nanosheets have broad research prospects in the fields of tumor photothermal therapy, biosensors and other biomedical fields because of their unique band gap structure and physical, chemical and optical properties. In this paper, the latest research progress on MoS is briefly summarized. Several commonly used exfoliation methods for the preparation of MoS nanosheets are reviewed based on the studies in the past five years. Additionally, the current research status of MoS nanosheets in the field of biomedicine is introduced. At the end of this review, a brief overview of the limitations of MoS research and its future prospects in the field of biomedicine is also provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2020.111162 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!