Casein kinase 1 alpha (CK1α) is a serine/threonine kinase with numerous functions, including regulating the Wnt/β-catenin and p53 pathways. CK1α has a well-established role in inhibiting the p53 tumor suppressor by binding to MDMX and stimulating MDMX-p53 interaction. MDMX purified from cells contains near-stoichiometric amounts of CK1α, suggesting that MDMX may in turn regulate CK1α function. We present evidence that MDMX is a potent competitive inhibitor of CK1α kinase activity (K = 8 nM). Depletion of MDMX increases CK1α activity and β-catenin S45 phosphorylation, whereas ectopic MDMX expression inhibits CK1α activity and β-catenin phosphorylation. The MDMX acidic domain and zinc finger are necessary and sufficient for binding and inhibition of CK1α. P53 binding to MDMX disrupts an intramolecular auto-regulatory interaction and enhances its ability to inhibit CK1α. P53-null mice expressing the MDMX mutant, defective in CK1α binding, exhibit reduced Wnt/β-catenin target gene expression and delayed tumor development. Therefore, MDMX is a physiological inhibitor of CK1α and has a role in modulating cellular response to Wnt signaling. The MDMX-CK1α interaction may account for certain p53-independent functions of MDMX.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361285 | PMC |
http://dx.doi.org/10.15252/embj.2020104410 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!